Answer
Verified
390k+ views
Hint: For solving this question you should know about the unit vectors in planes. A unit vector in the XY- plane indicates that there is no Z-axis, we have to find the value of $\overrightarrow{a}=x\widehat{i}+y\widehat{j}$ and for that we will let a unit vector $\overrightarrow{a}$ and using the formula of dot product $\overrightarrow{a}.\overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta $ we will find the value of X and Y.
Complete step-by-step solution:
According to our question it is asked to write all the unit vectors in the XY- plane. Let the unit vector be $\overrightarrow{a}$, we know that $\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}$, where x-axis is $\widehat{i}$, y-axis is $\widehat{j}$ and z-axis is$\widehat{k}$. Since the vector is in XY-plane, that means there is no z-coordinate (z = 0). Then,
$\begin{align}
& \overrightarrow{a}=x\widehat{i}+y\widehat{j}+0\widehat{k} \\
& \Rightarrow \overrightarrow{a}=x\widehat{i}+y\widehat{j} \\
\end{align}$
The unit vector in the direction of x-axis is $\widehat{i}$ and y-axis is $\widehat{j}$.
Angle with x-axis:
Since $\overrightarrow{a}$ makes an angle of $\theta $ with x-axis, so angle between $\overrightarrow{a}$ and $\widehat{i}$ is $\theta $.
We know that: $\overrightarrow{a}.\overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta $
So, putting $\overrightarrow{a}=\overrightarrow{a,}\overrightarrow{b}=\widehat{i,}\theta =\theta $
$\overrightarrow{a}.\widehat{i}=\left| \overrightarrow{a} \right|\left| \widehat{i} \right|\cos \theta $
As $\overrightarrow{a}$ is a unit vector, $\left| \overrightarrow{a} \right|=1$ and $\widehat{i}$ is a unit vector, $\left| \widehat{i} \right|=1$. So,
$\begin{align}
& \overrightarrow{a}.\widehat{i}=1\times 1\times \cos \theta \\
&\Rightarrow \overrightarrow{a}.\widehat{i}=\cos \theta \\
&\Rightarrow \left( x\widehat{i}+y\widehat{j}+0\widehat{k} \right).\widehat{i}=\cos \theta \\
&\Rightarrow \left( x\widehat{i}+y\widehat{j}+0\widehat{k} \right).\left( 1\widehat{i}+0\widehat{j}+0\widehat{k} \right)=\cos \theta \\
&\Rightarrow x.1+y.0+0.0=\cos \theta \\
&\Rightarrow x=\cos \theta \\
\end{align}$
Angle with y-axis:
Since $\overrightarrow{a}$ makes an angle of $\left( {{90}^{\circ }}-\theta \right)$ with y-axis, so angle between $\overrightarrow{a}$ and $\widehat{j}$ is $\left( {{90}^{\circ }}-\theta \right)$.
We know that: $\overrightarrow{a}.\overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta $
So, putting $\overrightarrow{a}=\overrightarrow{a,}\overrightarrow{b}=\widehat{j,}\theta =\left( {{90}^{\circ }}-\theta \right)$
$\begin{align}
& \overrightarrow{a}.\widehat{j}=\left| \overrightarrow{a} \right|\left| \widehat{j} \right|\cos \left( {{90}^{\circ }}-\theta \right) \\
&\Rightarrow \overrightarrow{a}.\widehat{j}=1\times 1\times \cos \left( {{90}^{\circ }}-\theta \right) \\
&\Rightarrow \overrightarrow{a}.\widehat{j}=\cos \left( {{90}^{\circ }}-\theta \right) \\
&\Rightarrow \overrightarrow{a}.\widehat{j}=\sin \theta \\
&\Rightarrow \left( x\widehat{i}+y\widehat{j}+0\widehat{k} \right).\widehat{j}=\sin \theta \\
&\Rightarrow \left( x\widehat{i}+y\widehat{j}+0\widehat{k} \right).\left( 0\widehat{i}+1\widehat{j}+0\widehat{k} \right)=\sin \theta \\
&\Rightarrow x.0+y.1+0.0=\sin \theta \\
&\Rightarrow y=\sin \theta \\
\end{align}$
Thus,
$\begin{align}
& \overrightarrow{a}=x\widehat{i}+y\widehat{j} \\
&\Rightarrow \overrightarrow{a}=\cos \theta \widehat{i}+\sin \theta \widehat{j} \\
\end{align}$
This value will be true in all quadrants. So, $0\le \theta \le 2\pi $.
Therefore $\overrightarrow{a}=\cos \theta \widehat{i}+\sin \theta \widehat{j}$; for $0\le \theta \le 2\pi $.
Note: While solving this type of questions you should be careful of the angles from the x-axis and y-axis and always, we have to make a unit vector. And this will be mandatory to be in the XY-plane. And if it is in the XY-plane, then the rest Z-plane coordinate must be always zero.
Complete step-by-step solution:
According to our question it is asked to write all the unit vectors in the XY- plane. Let the unit vector be $\overrightarrow{a}$, we know that $\overrightarrow{a}=x\widehat{i}+y\widehat{j}+z\widehat{k}$, where x-axis is $\widehat{i}$, y-axis is $\widehat{j}$ and z-axis is$\widehat{k}$. Since the vector is in XY-plane, that means there is no z-coordinate (z = 0). Then,
$\begin{align}
& \overrightarrow{a}=x\widehat{i}+y\widehat{j}+0\widehat{k} \\
& \Rightarrow \overrightarrow{a}=x\widehat{i}+y\widehat{j} \\
\end{align}$
The unit vector in the direction of x-axis is $\widehat{i}$ and y-axis is $\widehat{j}$.
Angle with x-axis:
Since $\overrightarrow{a}$ makes an angle of $\theta $ with x-axis, so angle between $\overrightarrow{a}$ and $\widehat{i}$ is $\theta $.
We know that: $\overrightarrow{a}.\overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta $
So, putting $\overrightarrow{a}=\overrightarrow{a,}\overrightarrow{b}=\widehat{i,}\theta =\theta $
$\overrightarrow{a}.\widehat{i}=\left| \overrightarrow{a} \right|\left| \widehat{i} \right|\cos \theta $
As $\overrightarrow{a}$ is a unit vector, $\left| \overrightarrow{a} \right|=1$ and $\widehat{i}$ is a unit vector, $\left| \widehat{i} \right|=1$. So,
$\begin{align}
& \overrightarrow{a}.\widehat{i}=1\times 1\times \cos \theta \\
&\Rightarrow \overrightarrow{a}.\widehat{i}=\cos \theta \\
&\Rightarrow \left( x\widehat{i}+y\widehat{j}+0\widehat{k} \right).\widehat{i}=\cos \theta \\
&\Rightarrow \left( x\widehat{i}+y\widehat{j}+0\widehat{k} \right).\left( 1\widehat{i}+0\widehat{j}+0\widehat{k} \right)=\cos \theta \\
&\Rightarrow x.1+y.0+0.0=\cos \theta \\
&\Rightarrow x=\cos \theta \\
\end{align}$
Angle with y-axis:
Since $\overrightarrow{a}$ makes an angle of $\left( {{90}^{\circ }}-\theta \right)$ with y-axis, so angle between $\overrightarrow{a}$ and $\widehat{j}$ is $\left( {{90}^{\circ }}-\theta \right)$.
We know that: $\overrightarrow{a}.\overrightarrow{b}=\left| \overrightarrow{a} \right|\left| \overrightarrow{b} \right|\cos \theta $
So, putting $\overrightarrow{a}=\overrightarrow{a,}\overrightarrow{b}=\widehat{j,}\theta =\left( {{90}^{\circ }}-\theta \right)$
$\begin{align}
& \overrightarrow{a}.\widehat{j}=\left| \overrightarrow{a} \right|\left| \widehat{j} \right|\cos \left( {{90}^{\circ }}-\theta \right) \\
&\Rightarrow \overrightarrow{a}.\widehat{j}=1\times 1\times \cos \left( {{90}^{\circ }}-\theta \right) \\
&\Rightarrow \overrightarrow{a}.\widehat{j}=\cos \left( {{90}^{\circ }}-\theta \right) \\
&\Rightarrow \overrightarrow{a}.\widehat{j}=\sin \theta \\
&\Rightarrow \left( x\widehat{i}+y\widehat{j}+0\widehat{k} \right).\widehat{j}=\sin \theta \\
&\Rightarrow \left( x\widehat{i}+y\widehat{j}+0\widehat{k} \right).\left( 0\widehat{i}+1\widehat{j}+0\widehat{k} \right)=\sin \theta \\
&\Rightarrow x.0+y.1+0.0=\sin \theta \\
&\Rightarrow y=\sin \theta \\
\end{align}$
Thus,
$\begin{align}
& \overrightarrow{a}=x\widehat{i}+y\widehat{j} \\
&\Rightarrow \overrightarrow{a}=\cos \theta \widehat{i}+\sin \theta \widehat{j} \\
\end{align}$
This value will be true in all quadrants. So, $0\le \theta \le 2\pi $.
Therefore $\overrightarrow{a}=\cos \theta \widehat{i}+\sin \theta \widehat{j}$; for $0\le \theta \le 2\pi $.
Note: While solving this type of questions you should be careful of the angles from the x-axis and y-axis and always, we have to make a unit vector. And this will be mandatory to be in the XY-plane. And if it is in the XY-plane, then the rest Z-plane coordinate must be always zero.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE