Answer
Verified
410.1k+ views
Hint: The quadratic equation is a form of algebraic equation, it is defined as a combination of both variables and constants. Here in this question, we have to find the quadratic equation where here the roots are given. By following the sum product rule, we are going to find the quadratic equation.
Complete step-by-step answer:
The quadratic equation is an equation which contains both variables and constants. By solving the quadratic equation we get two roots for the equation. So we can say that for the quadratic equation has the highest degree 2.
To find the quadratic equation we use the sum product rule. In general the quadratic equation is defined as \[a{x^2} + bx + c\] , where a, b and c are constants and x is variable. According to the sum product rule the product of a and c is written as the sum of the b.
Now consider the given roots as \[\alpha \] and \[\beta \] . So we have \[\alpha = - 2\] and \[\beta = 7\]
In generally, considering the roots the sum product rule of an equation is written as
\[{x^2} - \left( {\alpha + \beta } \right)x + (\alpha \beta )\] ----------- (1)
The sum of the roots are \[\left( {\alpha + \beta } \right) = - 2 + 7\]
So we have \[\left( {\alpha + \beta } \right) = 5\] ------ (2)
The product of the roots are \[\left( {\alpha \beta } \right) = ( - 2)(7)\]
So we have \[\left( {\alpha \beta } \right) = - 14\] ----------- (3)
Substituting the equation (3) and equation (2) in the equation (1). We get
\[ \Rightarrow {x^2} - \left( 5 \right)x + ( - 14)\]
On simplifying we get
\[ \Rightarrow {x^2} - 5x - 14\] ------ (4)
Hence we have obtained the quadratic equation for the solutions -2 and 7.
We can also verify the obtained quadratic equation is correct or not by using the formula \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] . On comparing the equation (4) to the general form of equation we have a = 1, b = -5 and c = -14.
On substituting these values in the formula we have
\[x = \dfrac{{ - ( - 5) \pm \sqrt {{{( - 5)}^2} - 4(1)( - 14)} }}{{2(1)}}\]
\[ \Rightarrow x = \dfrac{{5 \pm \sqrt {25 + 56} }}{2}\]
\[
\Rightarrow x = \dfrac{{5 \pm \sqrt {81} }}{2} \\
\Rightarrow x = \dfrac{{5 \pm 9}}{2} \;
\]
So we have
\[ \Rightarrow x = \dfrac{{5 + 9}}{2} = \dfrac{{14}}{2}\] and \[x = \dfrac{{5 - 9}}{2} = \dfrac{{ - 4}}{2}\]
On simplifying we get \[x = 7\] and \[x = - 2\]
Hence the quadratic equation is correct.
Therefore the quadratic equation for the roots -2 and 7 is \[{x^2} - 5x - 14\]
So, the correct answer is “ \[x = 7\] and \[x = - 2\] ”.
Note: The equation is a quadratic equation. The roots can be solved by using the sum product rule. This defines as for the general quadratic equation \[a{x^2} + bx + c\] , the product of \[a{x^2}\] and c is equal to the sum of bx of the equation by using this we can form the equation and by using the formula \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] we can determine the roots for the equation.
Complete step-by-step answer:
The quadratic equation is an equation which contains both variables and constants. By solving the quadratic equation we get two roots for the equation. So we can say that for the quadratic equation has the highest degree 2.
To find the quadratic equation we use the sum product rule. In general the quadratic equation is defined as \[a{x^2} + bx + c\] , where a, b and c are constants and x is variable. According to the sum product rule the product of a and c is written as the sum of the b.
Now consider the given roots as \[\alpha \] and \[\beta \] . So we have \[\alpha = - 2\] and \[\beta = 7\]
In generally, considering the roots the sum product rule of an equation is written as
\[{x^2} - \left( {\alpha + \beta } \right)x + (\alpha \beta )\] ----------- (1)
The sum of the roots are \[\left( {\alpha + \beta } \right) = - 2 + 7\]
So we have \[\left( {\alpha + \beta } \right) = 5\] ------ (2)
The product of the roots are \[\left( {\alpha \beta } \right) = ( - 2)(7)\]
So we have \[\left( {\alpha \beta } \right) = - 14\] ----------- (3)
Substituting the equation (3) and equation (2) in the equation (1). We get
\[ \Rightarrow {x^2} - \left( 5 \right)x + ( - 14)\]
On simplifying we get
\[ \Rightarrow {x^2} - 5x - 14\] ------ (4)
Hence we have obtained the quadratic equation for the solutions -2 and 7.
We can also verify the obtained quadratic equation is correct or not by using the formula \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] . On comparing the equation (4) to the general form of equation we have a = 1, b = -5 and c = -14.
On substituting these values in the formula we have
\[x = \dfrac{{ - ( - 5) \pm \sqrt {{{( - 5)}^2} - 4(1)( - 14)} }}{{2(1)}}\]
\[ \Rightarrow x = \dfrac{{5 \pm \sqrt {25 + 56} }}{2}\]
\[
\Rightarrow x = \dfrac{{5 \pm \sqrt {81} }}{2} \\
\Rightarrow x = \dfrac{{5 \pm 9}}{2} \;
\]
So we have
\[ \Rightarrow x = \dfrac{{5 + 9}}{2} = \dfrac{{14}}{2}\] and \[x = \dfrac{{5 - 9}}{2} = \dfrac{{ - 4}}{2}\]
On simplifying we get \[x = 7\] and \[x = - 2\]
Hence the quadratic equation is correct.
Therefore the quadratic equation for the roots -2 and 7 is \[{x^2} - 5x - 14\]
So, the correct answer is “ \[x = 7\] and \[x = - 2\] ”.
Note: The equation is a quadratic equation. The roots can be solved by using the sum product rule. This defines as for the general quadratic equation \[a{x^2} + bx + c\] , the product of \[a{x^2}\] and c is equal to the sum of bx of the equation by using this we can form the equation and by using the formula \[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] we can determine the roots for the equation.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell