
How do you write a polynomial in standard form given zeros $ - 1$ (multiplicity $2$), $ - 2 - i$ (multiplicity $1$)?
Answer
546.3k+ views
Hint: First assume $\alpha = - 1$, $\beta = - 1$ and $\gamma = - 2 - i$ to be the zeroes of the cubic polynomial $f\left( x \right) = a{x^3} + b{x^2} + cx + d$, $a \ne 0$. Then, substitute the value of $\alpha ,\beta ,\gamma $ in equation (i) and simplify the right side of the equation. We will get the standard form of polynomial for given zeros.
Complete step by step solution:
Let $\alpha ,\beta ,\gamma $ be the zeroes of a cubic polynomial $f\left( x \right) = a{x^3} + b{x^2} + cx + d$, $a \ne 0$. Then by factor theorem, $x - \alpha $, $x - \beta $ and $x - \gamma $ are factors of $f\left( x \right)$.
$\therefore f\left( x \right) = k\left( {x - \alpha } \right)\left( {x - \beta } \right)\left( {x - \gamma } \right)$…(i)
$ \Rightarrow a{x^3} + b{x^2} + cx + d = k\left( {x - \alpha } \right)\left( {x - \beta } \right)\left( {x - \gamma } \right)$
$ \Rightarrow a{x^3} + b{x^2} + cx + d = k\left[ {{x^3} - \left( {\alpha + \beta + \gamma } \right){x^2} + \left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right)x - \alpha \beta \gamma } \right]$
$ \Rightarrow a{x^3} + b{x^2} + cx + d = k{x^3} - k\left( {\alpha + \beta + \gamma } \right){x^2} + k\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right)x - k\alpha \beta \gamma $
Comparing the coefficients of ${x^3},{x^2},x$ and constant terms on both sides, we get
$a = k$, \[b = - k\left( {\alpha + \beta + \gamma } \right)\], $c = k\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right)$ and $d = - k\alpha \beta \gamma $…(ii)
\[ \Rightarrow \alpha + \beta + \gamma = - \dfrac{b}{a}\]
$\alpha \beta + \beta \gamma + \gamma \alpha = \dfrac{c}{a}$
And, $\alpha \beta \gamma = - \dfrac{d}{a}$
Thus, Sum of zeroes of cubic polynomial, \[\alpha + \beta + \gamma = - \dfrac{b}{a}\]
And, Product of zeroes of cubic polynomial, $\alpha \beta \gamma = - \dfrac{d}{a}$
Step by step solution:
Here, it is given that a polynomial has zeros $ - 1$ (multiplicity $2$), $ - 2 - i$ (multiplicity $1$).
We have to find the polynomial in standard form.
First, we have to assume $\alpha = - 1$, $\beta = - 1$ and $\gamma = - 2 - i$ to be the zeroes of the cubic polynomial $f\left( x \right) = a{x^3} + b{x^2} + cx + d$, $a \ne 0$.
Since, $\alpha = - 1$, $\beta = - 1$ and $\gamma = - 2 - i$ are zeros of the cubic polynomial $f\left( x \right) = a{x^3} + b{x^2} + cx + d$, $a \ne 0$.
Then by factor theorem, $x - \alpha $, $x - \beta $ and $x - \gamma $ are factors of $f\left( x \right)$.
⇒ $x + 1$, $x + 1$ and $x + 2 + i$ are factors of $f\left( x \right)$.
Substitute the value of $\alpha ,\beta ,\gamma $ in equation (i).
$ \Rightarrow f\left( x \right) = k\left( {x + 1} \right)\left( {x + 1} \right)\left( {x + 2 + i} \right)$
Simplify the right side of the equation.
$ \Rightarrow f\left( x \right) = k\left( {{x^2} + 2x + 1} \right)\left( {x + 2 + i} \right)$
$ \Rightarrow f\left( x \right) = k\left[ {{x^2}\left( {x + 2 + i} \right) + 2x\left( {x + 2 + i} \right) + \left( {x + 2 + i} \right)} \right]$
$ \Rightarrow f\left( x \right) = k\left( {{x^3} + 2{x^2} + {x^2}i + 2{x^2} + 4x + 2xi + x + 2 + i} \right)$
$ \Rightarrow f\left( x \right) = k\left[ {{x^3} + \left( {4 + i} \right){x^2} + \left( {5 + 2i} \right)x + 2 + i} \right]$
Hence, $k\left[ {{x^3} + \left( {4 + i} \right){x^2} + \left( {5 + 2i} \right)x + 2 + i} \right]$ is the standard form of polynomial for given zeros.
Note: We can directly find the standard form of polynomial by finding the sum and product of given zeros.
Step by step solution:
Here, it is given that a polynomial has zeros $ - 1$ (multiplicity $2$), $ - 2 - i$ (multiplicity $1$).
We have to find the polynomial in standard form.
First, we have to assume $\alpha = - 1$, $\beta = - 1$ and $\gamma = - 2 - i$ to be the zeroes of the cubic polynomial $f\left( x \right) = a{x^3} + b{x^2} + cx + d$, $a \ne 0$.
We have to find $a,b,c,d$.
Substitute the value of $\alpha ,\beta ,\gamma $ in (ii) and find the value of $a,b,c,d$.
$a = k$, \[b = - k\left( { - 1 - 1 - 2 - i} \right)\], $c = k\left[ {\left( { - 1} \right)\left( { - 1} \right) + \left( { - 1} \right)\left( { - 2 - i} \right) + \left( { - 2 - i} \right)\left( { - 1} \right)} \right]$ and $d = - k\left( { - 1} \right)\left( { - 1} \right)\left( { - 2 - i} \right)$
⇒ $a = k$, \[b = k\left( {4 + i} \right)\], $c = k\left( {5 + 2i} \right)$ and $d = k\left( {2 + i} \right)$
Now, put the value of $a,b,c,d$ in $f\left( x \right) = a{x^3} + b{x^2} + cx + d$.
$ \Rightarrow f\left( x \right) = k\left[ {{x^3} + \left( {4 + i} \right){x^2} + \left( {5 + 2i} \right)x + 2 + i} \right]$
Final solution: Hence, $k\left[ {{x^3} + \left( {4 + i} \right){x^2} + \left( {5 + 2i} \right)x + 2 + i} \right]$ is the standard form of polynomial for given zeros.
Complete step by step solution:
Let $\alpha ,\beta ,\gamma $ be the zeroes of a cubic polynomial $f\left( x \right) = a{x^3} + b{x^2} + cx + d$, $a \ne 0$. Then by factor theorem, $x - \alpha $, $x - \beta $ and $x - \gamma $ are factors of $f\left( x \right)$.
$\therefore f\left( x \right) = k\left( {x - \alpha } \right)\left( {x - \beta } \right)\left( {x - \gamma } \right)$…(i)
$ \Rightarrow a{x^3} + b{x^2} + cx + d = k\left( {x - \alpha } \right)\left( {x - \beta } \right)\left( {x - \gamma } \right)$
$ \Rightarrow a{x^3} + b{x^2} + cx + d = k\left[ {{x^3} - \left( {\alpha + \beta + \gamma } \right){x^2} + \left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right)x - \alpha \beta \gamma } \right]$
$ \Rightarrow a{x^3} + b{x^2} + cx + d = k{x^3} - k\left( {\alpha + \beta + \gamma } \right){x^2} + k\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right)x - k\alpha \beta \gamma $
Comparing the coefficients of ${x^3},{x^2},x$ and constant terms on both sides, we get
$a = k$, \[b = - k\left( {\alpha + \beta + \gamma } \right)\], $c = k\left( {\alpha \beta + \beta \gamma + \gamma \alpha } \right)$ and $d = - k\alpha \beta \gamma $…(ii)
\[ \Rightarrow \alpha + \beta + \gamma = - \dfrac{b}{a}\]
$\alpha \beta + \beta \gamma + \gamma \alpha = \dfrac{c}{a}$
And, $\alpha \beta \gamma = - \dfrac{d}{a}$
Thus, Sum of zeroes of cubic polynomial, \[\alpha + \beta + \gamma = - \dfrac{b}{a}\]
And, Product of zeroes of cubic polynomial, $\alpha \beta \gamma = - \dfrac{d}{a}$
Step by step solution:
Here, it is given that a polynomial has zeros $ - 1$ (multiplicity $2$), $ - 2 - i$ (multiplicity $1$).
We have to find the polynomial in standard form.
First, we have to assume $\alpha = - 1$, $\beta = - 1$ and $\gamma = - 2 - i$ to be the zeroes of the cubic polynomial $f\left( x \right) = a{x^3} + b{x^2} + cx + d$, $a \ne 0$.
Since, $\alpha = - 1$, $\beta = - 1$ and $\gamma = - 2 - i$ are zeros of the cubic polynomial $f\left( x \right) = a{x^3} + b{x^2} + cx + d$, $a \ne 0$.
Then by factor theorem, $x - \alpha $, $x - \beta $ and $x - \gamma $ are factors of $f\left( x \right)$.
⇒ $x + 1$, $x + 1$ and $x + 2 + i$ are factors of $f\left( x \right)$.
Substitute the value of $\alpha ,\beta ,\gamma $ in equation (i).
$ \Rightarrow f\left( x \right) = k\left( {x + 1} \right)\left( {x + 1} \right)\left( {x + 2 + i} \right)$
Simplify the right side of the equation.
$ \Rightarrow f\left( x \right) = k\left( {{x^2} + 2x + 1} \right)\left( {x + 2 + i} \right)$
$ \Rightarrow f\left( x \right) = k\left[ {{x^2}\left( {x + 2 + i} \right) + 2x\left( {x + 2 + i} \right) + \left( {x + 2 + i} \right)} \right]$
$ \Rightarrow f\left( x \right) = k\left( {{x^3} + 2{x^2} + {x^2}i + 2{x^2} + 4x + 2xi + x + 2 + i} \right)$
$ \Rightarrow f\left( x \right) = k\left[ {{x^3} + \left( {4 + i} \right){x^2} + \left( {5 + 2i} \right)x + 2 + i} \right]$
Hence, $k\left[ {{x^3} + \left( {4 + i} \right){x^2} + \left( {5 + 2i} \right)x + 2 + i} \right]$ is the standard form of polynomial for given zeros.
Note: We can directly find the standard form of polynomial by finding the sum and product of given zeros.
Step by step solution:
Here, it is given that a polynomial has zeros $ - 1$ (multiplicity $2$), $ - 2 - i$ (multiplicity $1$).
We have to find the polynomial in standard form.
First, we have to assume $\alpha = - 1$, $\beta = - 1$ and $\gamma = - 2 - i$ to be the zeroes of the cubic polynomial $f\left( x \right) = a{x^3} + b{x^2} + cx + d$, $a \ne 0$.
We have to find $a,b,c,d$.
Substitute the value of $\alpha ,\beta ,\gamma $ in (ii) and find the value of $a,b,c,d$.
$a = k$, \[b = - k\left( { - 1 - 1 - 2 - i} \right)\], $c = k\left[ {\left( { - 1} \right)\left( { - 1} \right) + \left( { - 1} \right)\left( { - 2 - i} \right) + \left( { - 2 - i} \right)\left( { - 1} \right)} \right]$ and $d = - k\left( { - 1} \right)\left( { - 1} \right)\left( { - 2 - i} \right)$
⇒ $a = k$, \[b = k\left( {4 + i} \right)\], $c = k\left( {5 + 2i} \right)$ and $d = k\left( {2 + i} \right)$
Now, put the value of $a,b,c,d$ in $f\left( x \right) = a{x^3} + b{x^2} + cx + d$.
$ \Rightarrow f\left( x \right) = k\left[ {{x^3} + \left( {4 + i} \right){x^2} + \left( {5 + 2i} \right)x + 2 + i} \right]$
Final solution: Hence, $k\left[ {{x^3} + \left( {4 + i} \right){x^2} + \left( {5 + 2i} \right)x + 2 + i} \right]$ is the standard form of polynomial for given zeros.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

