Answer
Verified
414.9k+ views
Hint:First, you should see into the formulas for each of the 'fixings' to be certain you can think of them effectively. The formula for lead nitrate is \[Pb{\text{ }}{\left( {N{O_3}} \right)_2}\] and the formula for potassium chloride is \[KCl\]. \[Pb{\left( {N{O_3}} \right)_2}\left( {aq} \right) + 2KCl\left( {aq} \right) \to PbC{l_2}\left( s \right) + 2KN{O_3}\left( {aq} \right)\]
Complete step by step answer:
Presently you can start to compose the equation for the reaction between these two mixes.
\[Pb{\left( {N{O_3}} \right)_2} + {\text{ }}KCl\]
Next you embed a bolt to show the heading of the reaction:
\[Pb{\left( {N{O_3}} \right)_2} + {\text{ }}KCl{\text{ }} \to \]
Next you record the most probable reaction items. For this situation the two cations will switch their anions.
\[Pb{\left( {N{O_3}} \right)_2} + {\text{ }}KCl{\text{ }} \to {\text{ }}PbCl{\text{ }} + {\text{ }}K\left( {N{O_3}} \right)\]
Presently, the standard in adjusting a chemical equation is that you should have the very same number of particles on each side of the equation. As should be obvious, we don't have a similar number of \[\left( {N{O_3}} \right)\]particles, so we should fix that. Since we need something more \[\left( {N{O_3}} \right)\]on the right-hand side, we should make that two atoms of potassium nitrate.
\[Pb{\left( {N{O_3}} \right)_2} + {\text{ }}KCl{\text{ }} \to {\text{ }}PbCl{\text{ }} + {\text{ }}2K\left( {N{O_3}} \right)\]
That fixes the \[\left( {N{O_3}} \right)\] issue, yet now we have such a large number of potassium iotas on the right-hand side, so how about we add one more on the left side.
\[Pb{\left( {N{O_3}} \right)_2} + {\text{ }}2KCl{\text{ }} \to {\text{ }}PbCl{\text{ }} + {\text{ }}2K\left( {N{O_3}} \right)\]
Alright, that fixes the potassium balance, yet now we have such a large number of chlorides on the left. However, we have another issue. The right formula for lead chloride is \[PbC{l_2}\]so we should make that rectification.
\[Pb{\left( {N{O_3}} \right)_2} + {\text{ }}2KCl{\text{ }} \to {\text{ }}PbC{l_2}{\text{ }} + {\text{ }}2K\left( {N{O_3}} \right)\]
We currently have \[1\] particle of \[Pb\] on each side and \[2\] nitrate particles \[\left( {NO3} \right)\] on each side and \[2\] iotas of potassium on each side and two chloride particles on each side. This is presently a decent equation for the reaction of lead nitrate and potassium chloride.
Note:
Chemistry is an exploratory science and this is something that you should learn. All halides are dissolvable, Except for \[lead{\text{ }}\left( {II} \right){\text{ }}chloride\], mercurous chloride\[\left( {Hg_2Cl_2} \right)\], and silver chloride\[AgCl\].
Complete step by step answer:
Presently you can start to compose the equation for the reaction between these two mixes.
\[Pb{\left( {N{O_3}} \right)_2} + {\text{ }}KCl\]
Next you embed a bolt to show the heading of the reaction:
\[Pb{\left( {N{O_3}} \right)_2} + {\text{ }}KCl{\text{ }} \to \]
Next you record the most probable reaction items. For this situation the two cations will switch their anions.
\[Pb{\left( {N{O_3}} \right)_2} + {\text{ }}KCl{\text{ }} \to {\text{ }}PbCl{\text{ }} + {\text{ }}K\left( {N{O_3}} \right)\]
Presently, the standard in adjusting a chemical equation is that you should have the very same number of particles on each side of the equation. As should be obvious, we don't have a similar number of \[\left( {N{O_3}} \right)\]particles, so we should fix that. Since we need something more \[\left( {N{O_3}} \right)\]on the right-hand side, we should make that two atoms of potassium nitrate.
\[Pb{\left( {N{O_3}} \right)_2} + {\text{ }}KCl{\text{ }} \to {\text{ }}PbCl{\text{ }} + {\text{ }}2K\left( {N{O_3}} \right)\]
That fixes the \[\left( {N{O_3}} \right)\] issue, yet now we have such a large number of potassium iotas on the right-hand side, so how about we add one more on the left side.
\[Pb{\left( {N{O_3}} \right)_2} + {\text{ }}2KCl{\text{ }} \to {\text{ }}PbCl{\text{ }} + {\text{ }}2K\left( {N{O_3}} \right)\]
Alright, that fixes the potassium balance, yet now we have such a large number of chlorides on the left. However, we have another issue. The right formula for lead chloride is \[PbC{l_2}\]so we should make that rectification.
\[Pb{\left( {N{O_3}} \right)_2} + {\text{ }}2KCl{\text{ }} \to {\text{ }}PbC{l_2}{\text{ }} + {\text{ }}2K\left( {N{O_3}} \right)\]
We currently have \[1\] particle of \[Pb\] on each side and \[2\] nitrate particles \[\left( {NO3} \right)\] on each side and \[2\] iotas of potassium on each side and two chloride particles on each side. This is presently a decent equation for the reaction of lead nitrate and potassium chloride.
Note:
Chemistry is an exploratory science and this is something that you should learn. All halides are dissolvable, Except for \[lead{\text{ }}\left( {II} \right){\text{ }}chloride\], mercurous chloride\[\left( {Hg_2Cl_2} \right)\], and silver chloride\[AgCl\].
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The largest tea producing country in the world is A class 10 social science CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE