Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

How do you write $ 0.0001 $ in scientific notation?

Answer
VerifiedVerified
528.3k+ views
Hint: For solving this question we need to convert(write) given numbers into the scientific notation. In scientific notation, we write a number so that it has a single digit to the left of the decimal sign and is multiplied by an integer power of $ 10 $ .

Complete step-by-step answer:
Note that moving decimal p digits to right is equivalent to multiplying by $ {10^p} $ and moving decimal q digits to left is equivalent to dividing by $ {10^q} $ .
Hence, we should either divide the number by $ {10^p} $ i.e. multiply by $ {10^{ - p}} $ (if moving decimal to right) or multiply the number by $ {10^p} $ (if moving decimal to left).
In other words, it is written as $ a \times {10^n} $ , where $ 1 \leqslant a < 10 $ and $ n $ is an integer.
To write $ 0.0001 $ in scientific notation, we will have to move the decimal point four points to right, which literally means multiplying by $ {10^4} $ .
Hence in scientific notation $ 0.0001 = 1.0 \times {10^{ - 4}} $ (note that as we have moved decimal one point to right we are multiplying by $ {10^{ - 4}} $ .

Note: A short way of changing scientific notation is to move the decimal point until there is only one (non-zero) digit to the left of the point. The number of places moved is the index. Point moves to the right, the index decreases and if Point moves to the left, the index increases.

WhatsApp Banner