
Work out the following division
(i)$\left( {10x - 25} \right) \div 5$
(ii)$\left( {10x - 25} \right) \div \left( {2x - 5} \right)$
(iii)$10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right)$
(iv)$9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right)$
(v)$96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right)$
Answer
576.3k+ views
Hint:Here, we will use the factorization process. All the terms in the question can be expanded into their factors which will result in simplified expression.
Complete step-by-step solution
(i)Expand the terms in the expression $\left( {10x - 25} \right) \div 5$ into their factors.
$\begin{array}{c}
\left( {10x - 25} \right) \div 5 = \dfrac{{5 \times 2 \times x - 5 \times 5}}{5}\\
= \dfrac{{5\left( {2x - 5} \right)}}{5}\\
= 2x - 5
\end{array}$
Therefore, $2x - 5$ is the factor.
(ii)Expand the terms in the expression $\left( {10x - 25} \right) \div \left( {2x - 5} \right)$ into their factors.
$\begin{array}{c}
\left( {10x - 25} \right) \div \left( {2x - 5} \right) = \dfrac{{2 \times 5 \times x - 5 \times 5}}{{2x - 5}}\\
= \dfrac{{5\left( {2x - 5} \right)}}{{2x - 5}}\\
= 5
\end{array}$
Therefore, $5$ is the factor.
(iii) Expand the terms in the expression $10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right)$ into their factors.
$\begin{array}{c}
10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right) = \dfrac{{2 \times 5 \times y\left( {2 \times 3 \times y + \left( {3 \times 7} \right)} \right)}}{{5\left( {2y + 7} \right)}}\\
= \dfrac{{2 \times 5 \times y \times 3\left( {2y + 7} \right)}}{{5\left( {2y + 7} \right)}}\\
= 6y
\end{array}$
Therefore, $6y$ is the factor.
(iv)Expand the terms in the expression $9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right)$ into their factors.
\[\begin{array}{c}
9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right) = \dfrac{{9{x^2}{y^2}\left[ {\left( {3 \times z} \right) - \left( {2 \times 2 \times 2 \times 3} \right)} \right]}}{{27xy\left( {z - 8} \right)}}\\
= \dfrac{{{x^2}{y^2} \times 3\left[ {z - 8} \right]}}{{3xy\left( {z - 8} \right)}}\\
= xy
\end{array}\]
Therefore, $xy$ is the factor.
(v) Expand the terms in the expression $96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right)$ into their factors.
\[\begin{array}{c}
96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right) = \dfrac{{96abc\left( {3 \times a - 3 \times 4} \right)\left( {5 \times b - 2 \times 3 \times 5} \right)}}{{144\left( {a - 4} \right)\left( {b - 6} \right)}}\\
= \dfrac{{2abc \times 3 \times 5\left( {a - 4} \right)\left( {b - 6} \right)}}{{3\left( {a - 4} \right)\left( {b - 6} \right)}}\\
= 10abc
\end{array}\]
Therefore, $10abc$ is the factor.
Note: In such types of problems, we will factorize the dividend. The common factors will be cancelled considering that the value of the divisor is not zero. Make sure to check the common terms in the expression so that these terms can be resolved to get the answer.
Complete step-by-step solution
(i)Expand the terms in the expression $\left( {10x - 25} \right) \div 5$ into their factors.
$\begin{array}{c}
\left( {10x - 25} \right) \div 5 = \dfrac{{5 \times 2 \times x - 5 \times 5}}{5}\\
= \dfrac{{5\left( {2x - 5} \right)}}{5}\\
= 2x - 5
\end{array}$
Therefore, $2x - 5$ is the factor.
(ii)Expand the terms in the expression $\left( {10x - 25} \right) \div \left( {2x - 5} \right)$ into their factors.
$\begin{array}{c}
\left( {10x - 25} \right) \div \left( {2x - 5} \right) = \dfrac{{2 \times 5 \times x - 5 \times 5}}{{2x - 5}}\\
= \dfrac{{5\left( {2x - 5} \right)}}{{2x - 5}}\\
= 5
\end{array}$
Therefore, $5$ is the factor.
(iii) Expand the terms in the expression $10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right)$ into their factors.
$\begin{array}{c}
10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right) = \dfrac{{2 \times 5 \times y\left( {2 \times 3 \times y + \left( {3 \times 7} \right)} \right)}}{{5\left( {2y + 7} \right)}}\\
= \dfrac{{2 \times 5 \times y \times 3\left( {2y + 7} \right)}}{{5\left( {2y + 7} \right)}}\\
= 6y
\end{array}$
Therefore, $6y$ is the factor.
(iv)Expand the terms in the expression $9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right)$ into their factors.
\[\begin{array}{c}
9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right) = \dfrac{{9{x^2}{y^2}\left[ {\left( {3 \times z} \right) - \left( {2 \times 2 \times 2 \times 3} \right)} \right]}}{{27xy\left( {z - 8} \right)}}\\
= \dfrac{{{x^2}{y^2} \times 3\left[ {z - 8} \right]}}{{3xy\left( {z - 8} \right)}}\\
= xy
\end{array}\]
Therefore, $xy$ is the factor.
(v) Expand the terms in the expression $96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right)$ into their factors.
\[\begin{array}{c}
96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right) = \dfrac{{96abc\left( {3 \times a - 3 \times 4} \right)\left( {5 \times b - 2 \times 3 \times 5} \right)}}{{144\left( {a - 4} \right)\left( {b - 6} \right)}}\\
= \dfrac{{2abc \times 3 \times 5\left( {a - 4} \right)\left( {b - 6} \right)}}{{3\left( {a - 4} \right)\left( {b - 6} \right)}}\\
= 10abc
\end{array}\]
Therefore, $10abc$ is the factor.
Note: In such types of problems, we will factorize the dividend. The common factors will be cancelled considering that the value of the divisor is not zero. Make sure to check the common terms in the expression so that these terms can be resolved to get the answer.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

