
Work out the following division
(i)$\left( {10x - 25} \right) \div 5$
(ii)$\left( {10x - 25} \right) \div \left( {2x - 5} \right)$
(iii)$10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right)$
(iv)$9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right)$
(v)$96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right)$
Answer
590.1k+ views
Hint:Here, we will use the factorization process. All the terms in the question can be expanded into their factors which will result in simplified expression.
Complete step-by-step solution
(i)Expand the terms in the expression $\left( {10x - 25} \right) \div 5$ into their factors.
$\begin{array}{c}
\left( {10x - 25} \right) \div 5 = \dfrac{{5 \times 2 \times x - 5 \times 5}}{5}\\
= \dfrac{{5\left( {2x - 5} \right)}}{5}\\
= 2x - 5
\end{array}$
Therefore, $2x - 5$ is the factor.
(ii)Expand the terms in the expression $\left( {10x - 25} \right) \div \left( {2x - 5} \right)$ into their factors.
$\begin{array}{c}
\left( {10x - 25} \right) \div \left( {2x - 5} \right) = \dfrac{{2 \times 5 \times x - 5 \times 5}}{{2x - 5}}\\
= \dfrac{{5\left( {2x - 5} \right)}}{{2x - 5}}\\
= 5
\end{array}$
Therefore, $5$ is the factor.
(iii) Expand the terms in the expression $10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right)$ into their factors.
$\begin{array}{c}
10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right) = \dfrac{{2 \times 5 \times y\left( {2 \times 3 \times y + \left( {3 \times 7} \right)} \right)}}{{5\left( {2y + 7} \right)}}\\
= \dfrac{{2 \times 5 \times y \times 3\left( {2y + 7} \right)}}{{5\left( {2y + 7} \right)}}\\
= 6y
\end{array}$
Therefore, $6y$ is the factor.
(iv)Expand the terms in the expression $9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right)$ into their factors.
\[\begin{array}{c}
9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right) = \dfrac{{9{x^2}{y^2}\left[ {\left( {3 \times z} \right) - \left( {2 \times 2 \times 2 \times 3} \right)} \right]}}{{27xy\left( {z - 8} \right)}}\\
= \dfrac{{{x^2}{y^2} \times 3\left[ {z - 8} \right]}}{{3xy\left( {z - 8} \right)}}\\
= xy
\end{array}\]
Therefore, $xy$ is the factor.
(v) Expand the terms in the expression $96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right)$ into their factors.
\[\begin{array}{c}
96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right) = \dfrac{{96abc\left( {3 \times a - 3 \times 4} \right)\left( {5 \times b - 2 \times 3 \times 5} \right)}}{{144\left( {a - 4} \right)\left( {b - 6} \right)}}\\
= \dfrac{{2abc \times 3 \times 5\left( {a - 4} \right)\left( {b - 6} \right)}}{{3\left( {a - 4} \right)\left( {b - 6} \right)}}\\
= 10abc
\end{array}\]
Therefore, $10abc$ is the factor.
Note: In such types of problems, we will factorize the dividend. The common factors will be cancelled considering that the value of the divisor is not zero. Make sure to check the common terms in the expression so that these terms can be resolved to get the answer.
Complete step-by-step solution
(i)Expand the terms in the expression $\left( {10x - 25} \right) \div 5$ into their factors.
$\begin{array}{c}
\left( {10x - 25} \right) \div 5 = \dfrac{{5 \times 2 \times x - 5 \times 5}}{5}\\
= \dfrac{{5\left( {2x - 5} \right)}}{5}\\
= 2x - 5
\end{array}$
Therefore, $2x - 5$ is the factor.
(ii)Expand the terms in the expression $\left( {10x - 25} \right) \div \left( {2x - 5} \right)$ into their factors.
$\begin{array}{c}
\left( {10x - 25} \right) \div \left( {2x - 5} \right) = \dfrac{{2 \times 5 \times x - 5 \times 5}}{{2x - 5}}\\
= \dfrac{{5\left( {2x - 5} \right)}}{{2x - 5}}\\
= 5
\end{array}$
Therefore, $5$ is the factor.
(iii) Expand the terms in the expression $10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right)$ into their factors.
$\begin{array}{c}
10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right) = \dfrac{{2 \times 5 \times y\left( {2 \times 3 \times y + \left( {3 \times 7} \right)} \right)}}{{5\left( {2y + 7} \right)}}\\
= \dfrac{{2 \times 5 \times y \times 3\left( {2y + 7} \right)}}{{5\left( {2y + 7} \right)}}\\
= 6y
\end{array}$
Therefore, $6y$ is the factor.
(iv)Expand the terms in the expression $9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right)$ into their factors.
\[\begin{array}{c}
9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right) = \dfrac{{9{x^2}{y^2}\left[ {\left( {3 \times z} \right) - \left( {2 \times 2 \times 2 \times 3} \right)} \right]}}{{27xy\left( {z - 8} \right)}}\\
= \dfrac{{{x^2}{y^2} \times 3\left[ {z - 8} \right]}}{{3xy\left( {z - 8} \right)}}\\
= xy
\end{array}\]
Therefore, $xy$ is the factor.
(v) Expand the terms in the expression $96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right)$ into their factors.
\[\begin{array}{c}
96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right) = \dfrac{{96abc\left( {3 \times a - 3 \times 4} \right)\left( {5 \times b - 2 \times 3 \times 5} \right)}}{{144\left( {a - 4} \right)\left( {b - 6} \right)}}\\
= \dfrac{{2abc \times 3 \times 5\left( {a - 4} \right)\left( {b - 6} \right)}}{{3\left( {a - 4} \right)\left( {b - 6} \right)}}\\
= 10abc
\end{array}\]
Therefore, $10abc$ is the factor.
Note: In such types of problems, we will factorize the dividend. The common factors will be cancelled considering that the value of the divisor is not zero. Make sure to check the common terms in the expression so that these terms can be resolved to get the answer.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

What is the difference between biodegradable and nonbiodegradable class 11 biology CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

