
Work out the following division
(i)$\left( {10x - 25} \right) \div 5$
(ii)$\left( {10x - 25} \right) \div \left( {2x - 5} \right)$
(iii)$10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right)$
(iv)$9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right)$
(v)$96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right)$
Answer
509.1k+ views
Hint:Here, we will use the factorization process. All the terms in the question can be expanded into their factors which will result in simplified expression.
Complete step-by-step solution
(i)Expand the terms in the expression $\left( {10x - 25} \right) \div 5$ into their factors.
$\begin{array}{c}
\left( {10x - 25} \right) \div 5 = \dfrac{{5 \times 2 \times x - 5 \times 5}}{5}\\
= \dfrac{{5\left( {2x - 5} \right)}}{5}\\
= 2x - 5
\end{array}$
Therefore, $2x - 5$ is the factor.
(ii)Expand the terms in the expression $\left( {10x - 25} \right) \div \left( {2x - 5} \right)$ into their factors.
$\begin{array}{c}
\left( {10x - 25} \right) \div \left( {2x - 5} \right) = \dfrac{{2 \times 5 \times x - 5 \times 5}}{{2x - 5}}\\
= \dfrac{{5\left( {2x - 5} \right)}}{{2x - 5}}\\
= 5
\end{array}$
Therefore, $5$ is the factor.
(iii) Expand the terms in the expression $10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right)$ into their factors.
$\begin{array}{c}
10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right) = \dfrac{{2 \times 5 \times y\left( {2 \times 3 \times y + \left( {3 \times 7} \right)} \right)}}{{5\left( {2y + 7} \right)}}\\
= \dfrac{{2 \times 5 \times y \times 3\left( {2y + 7} \right)}}{{5\left( {2y + 7} \right)}}\\
= 6y
\end{array}$
Therefore, $6y$ is the factor.
(iv)Expand the terms in the expression $9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right)$ into their factors.
\[\begin{array}{c}
9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right) = \dfrac{{9{x^2}{y^2}\left[ {\left( {3 \times z} \right) - \left( {2 \times 2 \times 2 \times 3} \right)} \right]}}{{27xy\left( {z - 8} \right)}}\\
= \dfrac{{{x^2}{y^2} \times 3\left[ {z - 8} \right]}}{{3xy\left( {z - 8} \right)}}\\
= xy
\end{array}\]
Therefore, $xy$ is the factor.
(v) Expand the terms in the expression $96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right)$ into their factors.
\[\begin{array}{c}
96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right) = \dfrac{{96abc\left( {3 \times a - 3 \times 4} \right)\left( {5 \times b - 2 \times 3 \times 5} \right)}}{{144\left( {a - 4} \right)\left( {b - 6} \right)}}\\
= \dfrac{{2abc \times 3 \times 5\left( {a - 4} \right)\left( {b - 6} \right)}}{{3\left( {a - 4} \right)\left( {b - 6} \right)}}\\
= 10abc
\end{array}\]
Therefore, $10abc$ is the factor.
Note: In such types of problems, we will factorize the dividend. The common factors will be cancelled considering that the value of the divisor is not zero. Make sure to check the common terms in the expression so that these terms can be resolved to get the answer.
Complete step-by-step solution
(i)Expand the terms in the expression $\left( {10x - 25} \right) \div 5$ into their factors.
$\begin{array}{c}
\left( {10x - 25} \right) \div 5 = \dfrac{{5 \times 2 \times x - 5 \times 5}}{5}\\
= \dfrac{{5\left( {2x - 5} \right)}}{5}\\
= 2x - 5
\end{array}$
Therefore, $2x - 5$ is the factor.
(ii)Expand the terms in the expression $\left( {10x - 25} \right) \div \left( {2x - 5} \right)$ into their factors.
$\begin{array}{c}
\left( {10x - 25} \right) \div \left( {2x - 5} \right) = \dfrac{{2 \times 5 \times x - 5 \times 5}}{{2x - 5}}\\
= \dfrac{{5\left( {2x - 5} \right)}}{{2x - 5}}\\
= 5
\end{array}$
Therefore, $5$ is the factor.
(iii) Expand the terms in the expression $10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right)$ into their factors.
$\begin{array}{c}
10y\left( {6y + 21} \right) \div 5\left( {2y + 7} \right) = \dfrac{{2 \times 5 \times y\left( {2 \times 3 \times y + \left( {3 \times 7} \right)} \right)}}{{5\left( {2y + 7} \right)}}\\
= \dfrac{{2 \times 5 \times y \times 3\left( {2y + 7} \right)}}{{5\left( {2y + 7} \right)}}\\
= 6y
\end{array}$
Therefore, $6y$ is the factor.
(iv)Expand the terms in the expression $9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right)$ into their factors.
\[\begin{array}{c}
9{x^2}{y^2}\left( {3z - 24} \right) \div 27xy\left( {z - 8} \right) = \dfrac{{9{x^2}{y^2}\left[ {\left( {3 \times z} \right) - \left( {2 \times 2 \times 2 \times 3} \right)} \right]}}{{27xy\left( {z - 8} \right)}}\\
= \dfrac{{{x^2}{y^2} \times 3\left[ {z - 8} \right]}}{{3xy\left( {z - 8} \right)}}\\
= xy
\end{array}\]
Therefore, $xy$ is the factor.
(v) Expand the terms in the expression $96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right)$ into their factors.
\[\begin{array}{c}
96abc\left( {3a - 12} \right)\left( {5b - 30} \right) \div 144\left( {a - 4} \right)\left( {b - 6} \right) = \dfrac{{96abc\left( {3 \times a - 3 \times 4} \right)\left( {5 \times b - 2 \times 3 \times 5} \right)}}{{144\left( {a - 4} \right)\left( {b - 6} \right)}}\\
= \dfrac{{2abc \times 3 \times 5\left( {a - 4} \right)\left( {b - 6} \right)}}{{3\left( {a - 4} \right)\left( {b - 6} \right)}}\\
= 10abc
\end{array}\]
Therefore, $10abc$ is the factor.
Note: In such types of problems, we will factorize the dividend. The common factors will be cancelled considering that the value of the divisor is not zero. Make sure to check the common terms in the expression so that these terms can be resolved to get the answer.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
How many moles and how many grams of NaCl are present class 11 chemistry CBSE

How do I get the molar mass of urea class 11 chemistry CBSE

Plants which grow in shade are called A Sciophytes class 11 biology CBSE

A renewable exhaustible natural resource is A Petroleum class 11 biology CBSE

In which of the following gametophytes is not independent class 11 biology CBSE

Find the molecular mass of Sulphuric Acid class 11 chemistry CBSE
