
Without using trigonometric tables, evaluate the following:
$\sec {41^ \circ }.\sin {49^ \circ } + \cos {49^ \circ }.\cos ec{41^ \circ } - \dfrac{2}{{\sqrt 3 }}(\tan {20^ \circ }.\tan {60^ \circ }.\tan {70^ \circ })$
Answer
614.7k+ views
Hint: Use the trigonometric identities-
$\cos ec({90^ \circ } - A) = \sec A,\tan A = \cot ({90^ \circ } - A)$ and then solve the question.
We have been given, $\sec {41^ \circ }.\sin {49^ \circ } + \cos {49^ \circ }.\cos ec{41^ \circ } - \dfrac{2}{{\sqrt 3 }}(\tan {20^ \circ }.\tan {60^ \circ }.\tan {70^ \circ })$.
Complete step-by-step answer:
Now using the trigonometric identities-
$
\sec ({41^ \circ }) = \cos ec({90^ \circ } - {41^ \circ }) \\
\cos ec({41^ \circ }) = \sec ({90^ \circ } - {41^ \circ }) \\
\tan ({70^ \circ }) = \cot ({90^ \circ } - 70) \\
$
So, the expression will be transformed in-
$
\cos ec({90^ \circ } - {41^ \circ }).\sin {49^ \circ } + \cos {49^ \circ }.\sec ({90^ \circ } - {41^ \circ }) - \dfrac{2}{{\sqrt 3 }}(\tan {20^ \circ }.\tan {60^ \circ }.\cot ({90^ \circ } - {70^ \circ })) \\
= \cos ec{49^ \circ }.\sin {49^ \circ } + \cos {49^ \circ }\sec {49^ \circ } - \dfrac{2}{{\sqrt 3 }}(\tan {20^ \circ }.\tan {60^ \circ }.\cot ({20^ \circ }) - (1) \\
$
Now, we know-
$\cos ecA = \dfrac{1}{{\sin A}},\sec A = \dfrac{1}{{\cos A}},\cot A = \dfrac{1}{{\tan A}}$, using these trigonometric formulas in equation (1), we get-
$
= \dfrac{1}{{\sin {{49}^ \circ }}}.\sin {49^ \circ } + \cos {49^ \circ }.\dfrac{1}{{\cos {{49}^ \circ }}} - \dfrac{2}{{\sqrt 3 }}(\tan {20^ \circ }.\tan {60^ \circ }.\dfrac{1}{{\tan {{20}^ \circ }}}) \\
= 1 + 1 - \dfrac{2}{{\sqrt 3 }}(\tan {60^ \circ }) \\
= 1 + 1 - \dfrac{2}{{\sqrt 3 }}.\sqrt 3 \\
= 2 - 2 \\
= 0 \\
$
Hence, the value of the given expression is 0.
Note: Whenever such types of question appear, then wrote down the expression given in the question and then try to convert it into a simplified form by using trigonometric formulas and then by using $\cos ecA = \dfrac{1}{{\sin A}},\sec A = \dfrac{1}{{\cos A}},\cot A = \dfrac{1}{{\tan A}}$in equation (1), we will get $ = 1 + 1 - \dfrac{2}{{\sqrt 3 }}(\tan {60^ \circ })$, solving it further we get the answer as 0.
$\cos ec({90^ \circ } - A) = \sec A,\tan A = \cot ({90^ \circ } - A)$ and then solve the question.
We have been given, $\sec {41^ \circ }.\sin {49^ \circ } + \cos {49^ \circ }.\cos ec{41^ \circ } - \dfrac{2}{{\sqrt 3 }}(\tan {20^ \circ }.\tan {60^ \circ }.\tan {70^ \circ })$.
Complete step-by-step answer:
Now using the trigonometric identities-
$
\sec ({41^ \circ }) = \cos ec({90^ \circ } - {41^ \circ }) \\
\cos ec({41^ \circ }) = \sec ({90^ \circ } - {41^ \circ }) \\
\tan ({70^ \circ }) = \cot ({90^ \circ } - 70) \\
$
So, the expression will be transformed in-
$
\cos ec({90^ \circ } - {41^ \circ }).\sin {49^ \circ } + \cos {49^ \circ }.\sec ({90^ \circ } - {41^ \circ }) - \dfrac{2}{{\sqrt 3 }}(\tan {20^ \circ }.\tan {60^ \circ }.\cot ({90^ \circ } - {70^ \circ })) \\
= \cos ec{49^ \circ }.\sin {49^ \circ } + \cos {49^ \circ }\sec {49^ \circ } - \dfrac{2}{{\sqrt 3 }}(\tan {20^ \circ }.\tan {60^ \circ }.\cot ({20^ \circ }) - (1) \\
$
Now, we know-
$\cos ecA = \dfrac{1}{{\sin A}},\sec A = \dfrac{1}{{\cos A}},\cot A = \dfrac{1}{{\tan A}}$, using these trigonometric formulas in equation (1), we get-
$
= \dfrac{1}{{\sin {{49}^ \circ }}}.\sin {49^ \circ } + \cos {49^ \circ }.\dfrac{1}{{\cos {{49}^ \circ }}} - \dfrac{2}{{\sqrt 3 }}(\tan {20^ \circ }.\tan {60^ \circ }.\dfrac{1}{{\tan {{20}^ \circ }}}) \\
= 1 + 1 - \dfrac{2}{{\sqrt 3 }}(\tan {60^ \circ }) \\
= 1 + 1 - \dfrac{2}{{\sqrt 3 }}.\sqrt 3 \\
= 2 - 2 \\
= 0 \\
$
Hence, the value of the given expression is 0.
Note: Whenever such types of question appear, then wrote down the expression given in the question and then try to convert it into a simplified form by using trigonometric formulas and then by using $\cos ecA = \dfrac{1}{{\sin A}},\sec A = \dfrac{1}{{\cos A}},\cot A = \dfrac{1}{{\tan A}}$in equation (1), we will get $ = 1 + 1 - \dfrac{2}{{\sqrt 3 }}(\tan {60^ \circ })$, solving it further we get the answer as 0.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

Calculate the equivalent resistance between a and b class 12 physics CBSE

How many states of matter are there in total class 12 chemistry CBSE

Which of the following is the best conductor of electricity class 12 physics CBSE

