Courses
Courses for Kids
Free study material
Offline Centres
More
Store

# Without using trigonometric tables, evaluate the following:$2\left( {\dfrac{{\cos {{58}^0}}}{{\sin {{32}^0}}}} \right) - \sqrt 3 \left( {\dfrac{{\cos {{38}^0}\cos ec{{52}^0}}}{{\tan {{15}^0}\tan {{60}^0}\tan {{75}^0}}}} \right).$

Last updated date: 12th Sep 2024
Total views: 429k
Views today: 6.29k
Verified
429k+ views
Hint: To attempt this question remember the trigonometric identities and remember to use $\tan ({90^0} - \theta ) = \cot \theta$ and $\cos ({90^0} - \theta ) = \sin \theta$in the equation then apply the identities like $\sin \theta = \dfrac{1}{{\cos ec\theta }}$and $\tan \theta = \dfrac{1}{{\cot \theta }}$, use this information to approach the solution.

According to the given information we have the function $2\left( {\dfrac{{\cos {{58}^0}}}{{\sin {{32}^0}}}} \right) - \sqrt 3 \left( {\dfrac{{\cos {{38}^0}\cos ec{{52}^0}}}{{\tan {{15}^0}\tan {{60}^0}\tan {{75}^0}}}} \right).$
$I = 2\left( {\dfrac{{\cos {{58}^0}}}{{\sin {{32}^0}}}} \right) - \sqrt 3 \left( {\dfrac{{\cos {{38}^0}\cos ec{{52}^0}}}{{\tan {{15}^0}\tan {{60}^0}\tan {{75}^0}}}} \right)$ (equation 1)
Since we know that $\tan ({90^0} - \theta ) = \cot \theta$ and $\cos ({90^0} - \theta ) = \sin \theta$
$2\left( {\dfrac{{\cos ({{90}^0} - {{32}^0})}}{{\sin {{32}^0}}}} \right) - \sqrt 3 \left( {\dfrac{{\cos ({{90}^0} - {{52}^0})\cos ec{{52}^0}}}{{\tan {{15}^0}\tan {{60}^0}\tan ({{90}^0} - {{15}^0})}}} \right)$
$\Rightarrow $$2\left( {\dfrac{{\sin {{32}^0})}}{{\sin {{32}^0}}}} \right) - \sqrt 3 \left( {\dfrac{{\sin {{52}^0}\cos ec{{52}^0}}}{{\tan {{15}^0} \times \sqrt 3 \times \cot {{15}^0}}}} \right) Now, we know that \sin \theta = \dfrac{1}{{\cos ec\theta }} or \sin \theta \cos ec\theta = 1 We also know that,\tan \theta = \dfrac{1}{{\cot \theta }} or \tan \theta \cot \theta = 1 Using these identities in the equation 1 we get I = 2(1) - \sqrt 3 \left( {\dfrac{1}{{\sqrt 3 }}} \right) \Rightarrow$$I = 2 - 1 = 1$
Therefore, the value of given function i.e. $2\left( {\dfrac{{\cos {{58}^0}}}{{\sin {{32}^0}}}} \right) - \sqrt 3 \left( {\dfrac{{\cos {{38}^0}\cos ec{{52}^0}}}{{\tan {{15}^0}\tan {{60}^0}\tan {{75}^0}}}} \right) = 1$
Note: In the above solution we used the trigonometric identities which are the expressions which involve trigonometric functions where the term “function” can be explained as relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y then the function is represented by $f:X \to Y$ examples of function are one-one functions, onto functions, bijective functions, trigonometric function, binary function, etc.