Without using trigonometric tables, evaluate the following:
\[2\left( {\dfrac{{\cos {{58}^0}}}{{\sin {{32}^0}}}} \right) - \sqrt 3 \left( {\dfrac{{\cos {{38}^0}\cos ec{{52}^0}}}{{\tan {{15}^0}\tan {{60}^0}\tan {{75}^0}}}} \right).\]
Answer
Verified
468k+ views
Hint: To attempt this question remember the trigonometric identities and remember to use $\tan ({90^0} - \theta ) = \cot \theta $ and $\cos ({90^0} - \theta ) = \sin \theta $in the equation then apply the identities like $\sin \theta = \dfrac{1}{{\cos ec\theta }}$and $\tan \theta = \dfrac{1}{{\cot \theta }}$, use this information to approach the solution.
Complete step-by-step answer:
According to the given information we have the function \[2\left( {\dfrac{{\cos {{58}^0}}}{{\sin {{32}^0}}}} \right) - \sqrt 3 \left( {\dfrac{{\cos {{38}^0}\cos ec{{52}^0}}}{{\tan {{15}^0}\tan {{60}^0}\tan {{75}^0}}}} \right).\]
Let us assume that
$I = 2\left( {\dfrac{{\cos {{58}^0}}}{{\sin {{32}^0}}}} \right) - \sqrt 3 \left( {\dfrac{{\cos {{38}^0}\cos ec{{52}^0}}}{{\tan {{15}^0}\tan {{60}^0}\tan {{75}^0}}}} \right)$ (equation 1)
Since we know that $\tan ({90^0} - \theta ) = \cot \theta $ and $\cos ({90^0} - \theta ) = \sin \theta $
Using this in the above equation we get
$2\left( {\dfrac{{\cos ({{90}^0} - {{32}^0})}}{{\sin {{32}^0}}}} \right) - \sqrt 3 \left( {\dfrac{{\cos ({{90}^0} - {{52}^0})\cos ec{{52}^0}}}{{\tan {{15}^0}\tan {{60}^0}\tan ({{90}^0} - {{15}^0})}}} \right)$
$ \Rightarrow $$2\left( {\dfrac{{\sin {{32}^0})}}{{\sin {{32}^0}}}} \right) - \sqrt 3 \left( {\dfrac{{\sin {{52}^0}\cos ec{{52}^0}}}{{\tan {{15}^0} \times \sqrt 3 \times \cot {{15}^0}}}} \right)$
Now, we know that $\sin \theta = \dfrac{1}{{\cos ec\theta }}$ or $\sin \theta \cos ec\theta = 1$
We also know that,$\tan \theta = \dfrac{1}{{\cot \theta }}$ or $\tan \theta \cot \theta = 1$
Using these identities in the equation 1 we get
$I = 2(1) - \sqrt 3 \left( {\dfrac{1}{{\sqrt 3 }}} \right)$
$ \Rightarrow $$I = 2 - 1 = 1$
Therefore, the value of given function i.e. $2\left( {\dfrac{{\cos {{58}^0}}}{{\sin {{32}^0}}}} \right) - \sqrt 3 \left( {\dfrac{{\cos {{38}^0}\cos ec{{52}^0}}}{{\tan {{15}^0}\tan {{60}^0}\tan {{75}^0}}}} \right) = 1$
So, this is the required answer.
Note: In the above solution we used the trigonometric identities which are the expressions which involve trigonometric functions where the term “function” can be explained as relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y then the function is represented by $f:X \to Y$ examples of function are one-one functions, onto functions, bijective functions, trigonometric function, binary function, etc.
Complete step-by-step answer:
According to the given information we have the function \[2\left( {\dfrac{{\cos {{58}^0}}}{{\sin {{32}^0}}}} \right) - \sqrt 3 \left( {\dfrac{{\cos {{38}^0}\cos ec{{52}^0}}}{{\tan {{15}^0}\tan {{60}^0}\tan {{75}^0}}}} \right).\]
Let us assume that
$I = 2\left( {\dfrac{{\cos {{58}^0}}}{{\sin {{32}^0}}}} \right) - \sqrt 3 \left( {\dfrac{{\cos {{38}^0}\cos ec{{52}^0}}}{{\tan {{15}^0}\tan {{60}^0}\tan {{75}^0}}}} \right)$ (equation 1)
Since we know that $\tan ({90^0} - \theta ) = \cot \theta $ and $\cos ({90^0} - \theta ) = \sin \theta $
Using this in the above equation we get
$2\left( {\dfrac{{\cos ({{90}^0} - {{32}^0})}}{{\sin {{32}^0}}}} \right) - \sqrt 3 \left( {\dfrac{{\cos ({{90}^0} - {{52}^0})\cos ec{{52}^0}}}{{\tan {{15}^0}\tan {{60}^0}\tan ({{90}^0} - {{15}^0})}}} \right)$
$ \Rightarrow $$2\left( {\dfrac{{\sin {{32}^0})}}{{\sin {{32}^0}}}} \right) - \sqrt 3 \left( {\dfrac{{\sin {{52}^0}\cos ec{{52}^0}}}{{\tan {{15}^0} \times \sqrt 3 \times \cot {{15}^0}}}} \right)$
Now, we know that $\sin \theta = \dfrac{1}{{\cos ec\theta }}$ or $\sin \theta \cos ec\theta = 1$
We also know that,$\tan \theta = \dfrac{1}{{\cot \theta }}$ or $\tan \theta \cot \theta = 1$
Using these identities in the equation 1 we get
$I = 2(1) - \sqrt 3 \left( {\dfrac{1}{{\sqrt 3 }}} \right)$
$ \Rightarrow $$I = 2 - 1 = 1$
Therefore, the value of given function i.e. $2\left( {\dfrac{{\cos {{58}^0}}}{{\sin {{32}^0}}}} \right) - \sqrt 3 \left( {\dfrac{{\cos {{38}^0}\cos ec{{52}^0}}}{{\tan {{15}^0}\tan {{60}^0}\tan {{75}^0}}}} \right) = 1$
So, this is the required answer.
Note: In the above solution we used the trigonometric identities which are the expressions which involve trigonometric functions where the term “function” can be explained as relation between the provided inputs and the outputs of the given inputs such that each input is directly related to the one output. The representation of a function is given by supposing if there is a function “f” that belongs from X to Y then the function is represented by $f:X \to Y$ examples of function are one-one functions, onto functions, bijective functions, trigonometric function, binary function, etc.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
The sequence of spore production in Puccinia wheat class 11 biology CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE
Lassaignes test for the detection of nitrogen will class 11 chemistry CBSE
The type of inflorescence in Tulsi a Cyanthium b Hypanthodium class 11 biology CBSE