
Without using tables, give the value of each of the following:
(i) \[\sin 120^\circ \]
(ii) \[\cot 330^\circ \]
(iii) \[\sec 210^\circ \]
(iv) \[\cos 315^\circ \]
(v) \[{\rm{cosec}}675^\circ \]
(vi) \[\cos 855^\circ \]
(vii) \[\sin 4530^\circ \]
Answer
563.1k+ views
Hint:
Here, we will write each of the angle values as a sum or difference of known angle values. Then, we will apply trigonometric identities to the resulting expressions to obtain the required values.
Formulae used:
We will use the following formulas:
1) \[\sin (90^\circ + \theta ) = \cos \theta \]
2) \[\cot (360^\circ - \theta ) = - \cot \theta \]
3) \[\sec (180^\circ + \theta ) = - \sec \theta \]
4) \[\cos (360^\circ - \theta ) = \cos \theta \]
5) \[{\rm{cosec(}}360^\circ k - \theta ) = - {\rm{cosec}}\theta \]
6) \[\cos (180^\circ k - \theta ) = - \cos \theta \]
7) \[\sin (180^\circ k + \theta ) = - \sin \theta \]
Complete Step by step Solution:
(i) We can write \[120^\circ \]as \[120^\circ = 90^\circ + 30^\circ \].
So, \[\sin 120^\circ = \sin (90^\circ + 30^\circ )\]
Using the formula \[\sin (90^\circ + \theta ) = \cos \theta \], we get
\[ \Rightarrow \sin 120^\circ = \cos 30^\circ \]
We know that \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\]. Thus, we have,
\[ \Rightarrow \sin 120^\circ = \dfrac{{\sqrt 3 }}{2}\]
(ii)We can write \[330^\circ {\rm{ as }}330^\circ = 360^\circ - 30^\circ \]. So,
\[\cot 330^\circ = \cot (360^\circ - 30^\circ )\]
Using the formula \[\cot (360^\circ - \theta ) = - \cot \theta \], we get
\[ \Rightarrow \cot 330^\circ = - \cot 30^\circ \]
We know that \[\cot 30^\circ = \sqrt 3 \]. Thus, we have,
\[ \Rightarrow \cot 330^\circ = - \sqrt 3 \]
(iii) We can write \[210^\circ \] as \[210^\circ = 180^\circ + 30^\circ \]. So,
\[\sec 210^\circ = \sec (180^\circ + 30^\circ )\]
Using the formula \[\sec (180^\circ + \theta ) = - \sec \theta \], we get
\[ \Rightarrow \sec 210^\circ = - \sec 30^\circ \]
We know that \[\sec 30^\circ = \dfrac{2}{{\sqrt 3 }}\]. Thus, we have,
\[ \Rightarrow \sec 210^\circ = - \dfrac{2}{{\sqrt 3 }}\]
(iv) We can write \[315^\circ {\rm{ as }}315^\circ = 360^\circ - 45^\circ \]. So,
\[\cos 315^\circ = \cos (360^\circ - 45^\circ )\]
Using the formula \[\cos (360^\circ - \theta ) = \cos \theta \], we get
\[ \Rightarrow \cos 315^\circ = \cos 45^\circ \]
We know that \[\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}\]. Thus, we have,
\[ \Rightarrow \cos 315^\circ = \dfrac{1}{{\sqrt 2 }}\]
(v) We can write \[675^\circ {\rm{ as }}675^\circ = 720^\circ - 45^\circ \].
We can write \[720^\circ = 360^\circ \times 2\].
\[ \Rightarrow 675^\circ = (360^\circ \times 2) - 45^\circ \]
Thus, \[\cos ec 675^\circ = \cos ec((360^\circ \times 2) - 45^\circ )\]
Using the formula \[\cos ec(360^\circ k - \theta ) = - \cos ec\theta \], we get
\[ \Rightarrow \cos ec675^\circ = - \cos ec45^\circ \]
We know that \[{\rm{cosec}}45^\circ = \sqrt 2 \]. Thus, we have,
\[ \Rightarrow \cos ec675^\circ = - \sqrt 2 \]
(vi) We can write \[855^\circ {\rm{ as }}855^\circ = 900^\circ - 45^\circ .\]
As we can write \[900^\circ = 180^\circ \times 5\], so,
\[ \Rightarrow 855^\circ = (180^\circ \times 5) - 45^\circ \]
Thus, \[\cos 855^\circ = \cos ((180^\circ \times 5) - 45^\circ )\]
Using the formula \[\cos (180^\circ k - \theta ) = - \cos \theta \], we get
\[ \Rightarrow \cos 855^\circ = - \cos 45^\circ \]
We know that \[\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}\]. Thus, we have,
\[ \Rightarrow \cos 855^\circ = - \dfrac{1}{{\sqrt 2 }}\]
We can write \[4530^\circ {\rm{ as }}4530^\circ = 4500^\circ + 30^\circ \].
As we can write \[4500^\circ = 180^\circ \times 25\], so
\[ \Rightarrow 4530^\circ = (180^\circ \times 25) + 30^\circ \]
(vii) Thus, \[\sin 4530^\circ = \sin ((180^\circ \times 25) + 30^\circ )\]
Using the formula \[\sin (180^\circ k + \theta ) = - \sin \theta \], we get
\[ \Rightarrow \sin 4530^\circ = - \sin 30^\circ \]
We know that \[\sin 30^\circ = \dfrac{1}{2}\]. Thus, we have,
\[ \Rightarrow \sin 4530^\circ = - \dfrac{1}{2}\]
Note:
To resolve \[\theta \] into solvable terms, we have adopted the following procedure:
For example, let us take \[855^\circ \].
We will check which multiple of \[180^\circ \] is nearest to \[855^\circ \].
We see that \[900^\circ = 180^\circ \times 5\].
But since we need \[855^\circ \], we can subtract \[45^\circ {\rm{ from }}900^\circ \] to get \[855^\circ \]. Therefore, \[855^\circ = (180^\circ \times 5) - 45^\circ \].
Similarly, we can resolve other angles into solvable terms.
Here, we will write each of the angle values as a sum or difference of known angle values. Then, we will apply trigonometric identities to the resulting expressions to obtain the required values.
Formulae used:
We will use the following formulas:
1) \[\sin (90^\circ + \theta ) = \cos \theta \]
2) \[\cot (360^\circ - \theta ) = - \cot \theta \]
3) \[\sec (180^\circ + \theta ) = - \sec \theta \]
4) \[\cos (360^\circ - \theta ) = \cos \theta \]
5) \[{\rm{cosec(}}360^\circ k - \theta ) = - {\rm{cosec}}\theta \]
6) \[\cos (180^\circ k - \theta ) = - \cos \theta \]
7) \[\sin (180^\circ k + \theta ) = - \sin \theta \]
Complete Step by step Solution:
(i) We can write \[120^\circ \]as \[120^\circ = 90^\circ + 30^\circ \].
So, \[\sin 120^\circ = \sin (90^\circ + 30^\circ )\]
Using the formula \[\sin (90^\circ + \theta ) = \cos \theta \], we get
\[ \Rightarrow \sin 120^\circ = \cos 30^\circ \]
We know that \[\cos 30^\circ = \dfrac{{\sqrt 3 }}{2}\]. Thus, we have,
\[ \Rightarrow \sin 120^\circ = \dfrac{{\sqrt 3 }}{2}\]
(ii)We can write \[330^\circ {\rm{ as }}330^\circ = 360^\circ - 30^\circ \]. So,
\[\cot 330^\circ = \cot (360^\circ - 30^\circ )\]
Using the formula \[\cot (360^\circ - \theta ) = - \cot \theta \], we get
\[ \Rightarrow \cot 330^\circ = - \cot 30^\circ \]
We know that \[\cot 30^\circ = \sqrt 3 \]. Thus, we have,
\[ \Rightarrow \cot 330^\circ = - \sqrt 3 \]
(iii) We can write \[210^\circ \] as \[210^\circ = 180^\circ + 30^\circ \]. So,
\[\sec 210^\circ = \sec (180^\circ + 30^\circ )\]
Using the formula \[\sec (180^\circ + \theta ) = - \sec \theta \], we get
\[ \Rightarrow \sec 210^\circ = - \sec 30^\circ \]
We know that \[\sec 30^\circ = \dfrac{2}{{\sqrt 3 }}\]. Thus, we have,
\[ \Rightarrow \sec 210^\circ = - \dfrac{2}{{\sqrt 3 }}\]
(iv) We can write \[315^\circ {\rm{ as }}315^\circ = 360^\circ - 45^\circ \]. So,
\[\cos 315^\circ = \cos (360^\circ - 45^\circ )\]
Using the formula \[\cos (360^\circ - \theta ) = \cos \theta \], we get
\[ \Rightarrow \cos 315^\circ = \cos 45^\circ \]
We know that \[\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}\]. Thus, we have,
\[ \Rightarrow \cos 315^\circ = \dfrac{1}{{\sqrt 2 }}\]
(v) We can write \[675^\circ {\rm{ as }}675^\circ = 720^\circ - 45^\circ \].
We can write \[720^\circ = 360^\circ \times 2\].
\[ \Rightarrow 675^\circ = (360^\circ \times 2) - 45^\circ \]
Thus, \[\cos ec 675^\circ = \cos ec((360^\circ \times 2) - 45^\circ )\]
Using the formula \[\cos ec(360^\circ k - \theta ) = - \cos ec\theta \], we get
\[ \Rightarrow \cos ec675^\circ = - \cos ec45^\circ \]
We know that \[{\rm{cosec}}45^\circ = \sqrt 2 \]. Thus, we have,
\[ \Rightarrow \cos ec675^\circ = - \sqrt 2 \]
(vi) We can write \[855^\circ {\rm{ as }}855^\circ = 900^\circ - 45^\circ .\]
As we can write \[900^\circ = 180^\circ \times 5\], so,
\[ \Rightarrow 855^\circ = (180^\circ \times 5) - 45^\circ \]
Thus, \[\cos 855^\circ = \cos ((180^\circ \times 5) - 45^\circ )\]
Using the formula \[\cos (180^\circ k - \theta ) = - \cos \theta \], we get
\[ \Rightarrow \cos 855^\circ = - \cos 45^\circ \]
We know that \[\cos 45^\circ = \dfrac{1}{{\sqrt 2 }}\]. Thus, we have,
\[ \Rightarrow \cos 855^\circ = - \dfrac{1}{{\sqrt 2 }}\]
We can write \[4530^\circ {\rm{ as }}4530^\circ = 4500^\circ + 30^\circ \].
As we can write \[4500^\circ = 180^\circ \times 25\], so
\[ \Rightarrow 4530^\circ = (180^\circ \times 25) + 30^\circ \]
(vii) Thus, \[\sin 4530^\circ = \sin ((180^\circ \times 25) + 30^\circ )\]
Using the formula \[\sin (180^\circ k + \theta ) = - \sin \theta \], we get
\[ \Rightarrow \sin 4530^\circ = - \sin 30^\circ \]
We know that \[\sin 30^\circ = \dfrac{1}{2}\]. Thus, we have,
\[ \Rightarrow \sin 4530^\circ = - \dfrac{1}{2}\]
Note:
To resolve \[\theta \] into solvable terms, we have adopted the following procedure:
For example, let us take \[855^\circ \].
We will check which multiple of \[180^\circ \] is nearest to \[855^\circ \].
We see that \[900^\circ = 180^\circ \times 5\].
But since we need \[855^\circ \], we can subtract \[45^\circ {\rm{ from }}900^\circ \] to get \[855^\circ \]. Therefore, \[855^\circ = (180^\circ \times 5) - 45^\circ \].
Similarly, we can resolve other angles into solvable terms.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

