Without finding the cubes, factorize:
${\left( {x - 2y} \right)^3} + {\left( {2y - 3z} \right)^3} + {\left( {3z - x} \right)^3}$
Answer
279k+ views
Hint: Given polynomial is of degree $3$. Polynomials of degree $3$ are known as cubic polynomials. The given cubic polynomial consists of three whole cube expressions or terms. We must solve this without cubing the expressions individually.
Complete step-by-step solution:
For factorising the given cubic polynomial ${\left( {x - 2y} \right)^3} + {\left( {2y - 3z} \right)^3} + {\left( {3z - x} \right)^3}$ without calculating the cubes if the expression, we must know the algebraic identities involving the cubic terms and expressions.
We know an algebraic identity of the form of sum of cubes of three terms ${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)$.
So, we can use this algebraic identity in the expression ${\left( {x - 2y} \right)^3} + {\left( {2y - 3z} \right)^3} + {\left( {3z - x} \right)^3}$, where a is $\left( {x - 2y} \right)$, b is $\left( {2y - 3z} \right)$ and c is $\left( {3z - x} \right)$.
So, before substituting the value of a, b and c in the expression ${a^3} + {b^3} + {c^3} = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc$, we can evaluate the bracket $\left( {a + b + c} \right)$ separately in order to simplify the expression.
So, $\left( {a + b + c} \right) = \left[ {\left( {x - 2y} \right) + \left( {2y - 3z} \right) + \left( {3z - x} \right)} \right]$
$ \Rightarrow \left( {a + b + c} \right) = \left[ {x - 2y + 2y - 3z + 3z - x} \right]$
Cancelling all the like terms with opposite signs, we get,
$ \Rightarrow \left( {a + b + c} \right) = 0$
Now, the value of the bracket $\left( {a + b + c} \right)$ is zero. Hence, the value of the entire right side of the equation ${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)$ is zero since the multiplication of any number with zero is always equals to zero.
So, we get, ${a^3} + {b^3} + {c^3} - 3abc = 0$ if $\left( {a + b + c} \right) = 0$.
Now, substituting the values of a, b and c, we get,
$ \Rightarrow {\left( {x - 2y} \right)^3} + {\left( {2y - 3z} \right)^3} + {\left( {3z - x} \right)^3} - 3\left( {x - 2y} \right)\left( {2y - 3z} \right)\left( {3z - x} \right) = 0$
Now, keeping all the whole cube terms in left side of the equation and shifting the rest of the terms in right side of the equation, we get,
$ \Rightarrow {\left( {x - 2y} \right)^3} + {\left( {2y - 3z} \right)^3} + {\left( {3z - x} \right)^3} = 3\left( {x - 2y} \right)\left( {2y - 3z} \right)\left( {3z - x} \right)$
Hence, the factored form of the cubic polynomial ${\left( {x - 2y} \right)^3} + {\left( {2y - 3z} \right)^3} + {\left( {3z - x} \right)^3}$ is $3\left( {x - 2y} \right)\left( {2y - 3z} \right)\left( {3z - x} \right)$.
Note: One must know the required algebraic identity so as to solve this problem. We must also learn the special case of the algebraic identity ${a^3} + {b^3} + {c^3} = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc$ when the value of $\left( {a + b + c} \right)$ is zero. We should always check for the value of the expression $\left( {a + b + c} \right)$ before applying the algebraic identity.
Complete step-by-step solution:
For factorising the given cubic polynomial ${\left( {x - 2y} \right)^3} + {\left( {2y - 3z} \right)^3} + {\left( {3z - x} \right)^3}$ without calculating the cubes if the expression, we must know the algebraic identities involving the cubic terms and expressions.
We know an algebraic identity of the form of sum of cubes of three terms ${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)$.
So, we can use this algebraic identity in the expression ${\left( {x - 2y} \right)^3} + {\left( {2y - 3z} \right)^3} + {\left( {3z - x} \right)^3}$, where a is $\left( {x - 2y} \right)$, b is $\left( {2y - 3z} \right)$ and c is $\left( {3z - x} \right)$.
So, before substituting the value of a, b and c in the expression ${a^3} + {b^3} + {c^3} = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc$, we can evaluate the bracket $\left( {a + b + c} \right)$ separately in order to simplify the expression.
So, $\left( {a + b + c} \right) = \left[ {\left( {x - 2y} \right) + \left( {2y - 3z} \right) + \left( {3z - x} \right)} \right]$
$ \Rightarrow \left( {a + b + c} \right) = \left[ {x - 2y + 2y - 3z + 3z - x} \right]$
Cancelling all the like terms with opposite signs, we get,
$ \Rightarrow \left( {a + b + c} \right) = 0$
Now, the value of the bracket $\left( {a + b + c} \right)$ is zero. Hence, the value of the entire right side of the equation ${a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)$ is zero since the multiplication of any number with zero is always equals to zero.
So, we get, ${a^3} + {b^3} + {c^3} - 3abc = 0$ if $\left( {a + b + c} \right) = 0$.
Now, substituting the values of a, b and c, we get,
$ \Rightarrow {\left( {x - 2y} \right)^3} + {\left( {2y - 3z} \right)^3} + {\left( {3z - x} \right)^3} - 3\left( {x - 2y} \right)\left( {2y - 3z} \right)\left( {3z - x} \right) = 0$
Now, keeping all the whole cube terms in left side of the equation and shifting the rest of the terms in right side of the equation, we get,
$ \Rightarrow {\left( {x - 2y} \right)^3} + {\left( {2y - 3z} \right)^3} + {\left( {3z - x} \right)^3} = 3\left( {x - 2y} \right)\left( {2y - 3z} \right)\left( {3z - x} \right)$
Hence, the factored form of the cubic polynomial ${\left( {x - 2y} \right)^3} + {\left( {2y - 3z} \right)^3} + {\left( {3z - x} \right)^3}$ is $3\left( {x - 2y} \right)\left( {2y - 3z} \right)\left( {3z - x} \right)$.
Note: One must know the required algebraic identity so as to solve this problem. We must also learn the special case of the algebraic identity ${a^3} + {b^3} + {c^3} = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right) + 3abc$ when the value of $\left( {a + b + c} \right)$ is zero. We should always check for the value of the expression $\left( {a + b + c} \right)$ before applying the algebraic identity.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
Which country launched the first satellite in space class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE
