
Without actually calculating the cubes, find the value of \[{{45}^{3}}-{{25}^{3}}-{{20}^{3}}\]
Answer
592.5k+ views
Hint: We can solve this question by using formula of difference of two cubes as\[{{a}^{3}}-{{b}^{3}}-(a-b)({{a}^{2}}+{{b}^{2}}+ab)\] and also difference of square formula ${{a}^{2}}-{{b}^{2}}=(a+b)(a-b)$
Complete step by step solution:
Given expression is
\[{{45}^{3}}-{{25}^{3}}-{{20}^{3}}\]
In first two term we can apply difference of two cubes formula \[[{{a}^{3}}-{{b}^{3}}-(a-b)({{a}^{2}}+{{b}^{2}}+ab)]\]
\[\Rightarrow (45-25)[{{45}^{2}}+{{25}^{2}}+(45\times 25)]-{{20}^{3}}\]
\[\Rightarrow 20[{{45}^{2}}+{{25}^{2}}+(45\times 25)]-{{20}^{3}}\]
Now we can take 20 as common
\[\Rightarrow 20[{{45}^{2}}+{{25}^{2}}+(45\times 25)-{{20}^{2}}]\]
Now take \[{{25}^{2}}-{{20}^{2}}\]as \[{{a}^{2}}-{{b}^{2}}\]
\[\therefore [{{a}^{2}}-{{b}^{2}}=(a+b)(a-b)]\]
\[\Rightarrow 20[{{45}^{2}}+(45\times 25)+(25+20)(25-20)]\]
\[\Rightarrow 20[{{45}^{2}}+(45\times 25)+(45\times 5)]\]
Now we can take 45 as common
\[\Rightarrow 20[45(45+25+5)]\]
\[\Rightarrow 20[45(75)]\]
\[\Rightarrow 20\times 45\times 75\]
$\Rightarrow 67500$
Note: Some children do mistake in formulae like instead of ‘+’ sign they use ‘-’ which later on spoils the complete solution. Therefore, this should be kept in mind.
Moreover, these simplification questions seem easy but we should keep in mind every step and side by side recheck every step for the accuracy of the solution. Trick was selecting 25 and 20 for (a+b)(a-b) identity instead of 45 and 20.
Complete step by step solution:
Given expression is
\[{{45}^{3}}-{{25}^{3}}-{{20}^{3}}\]
In first two term we can apply difference of two cubes formula \[[{{a}^{3}}-{{b}^{3}}-(a-b)({{a}^{2}}+{{b}^{2}}+ab)]\]
\[\Rightarrow (45-25)[{{45}^{2}}+{{25}^{2}}+(45\times 25)]-{{20}^{3}}\]
\[\Rightarrow 20[{{45}^{2}}+{{25}^{2}}+(45\times 25)]-{{20}^{3}}\]
Now we can take 20 as common
\[\Rightarrow 20[{{45}^{2}}+{{25}^{2}}+(45\times 25)-{{20}^{2}}]\]
Now take \[{{25}^{2}}-{{20}^{2}}\]as \[{{a}^{2}}-{{b}^{2}}\]
\[\therefore [{{a}^{2}}-{{b}^{2}}=(a+b)(a-b)]\]
\[\Rightarrow 20[{{45}^{2}}+(45\times 25)+(25+20)(25-20)]\]
\[\Rightarrow 20[{{45}^{2}}+(45\times 25)+(45\times 5)]\]
Now we can take 45 as common
\[\Rightarrow 20[45(45+25+5)]\]
\[\Rightarrow 20[45(75)]\]
\[\Rightarrow 20\times 45\times 75\]
$\Rightarrow 67500$
Note: Some children do mistake in formulae like instead of ‘+’ sign they use ‘-’ which later on spoils the complete solution. Therefore, this should be kept in mind.
Moreover, these simplification questions seem easy but we should keep in mind every step and side by side recheck every step for the accuracy of the solution. Trick was selecting 25 and 20 for (a+b)(a-b) identity instead of 45 and 20.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?

