Without actually calculating the cubes , find the value of the following: $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)$ .
Answer
381.9k+ views
Hint: The given problem is related to algebraic identities. $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)$ is of the form \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\] and here \[a+b+c=0\]. So, the identity \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\], when \[a+b+c=0\], is applicable here.
Complete step-by-step answer:
Let’s consider three numbers $a,b$ and $c$, such that \[a+b+c=0\]. We have to find the value of \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\].
We know \[{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right)\]. We can write \[{{\left( a+b+c \right)}^{3}}\] as \[{{\left( a+b+c \right)}^{2}}\left( a+b+c \right)\].
So, ${{\left( a+b+c \right)}^{3}}=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right) \right)$ .
On multiplying the terms in the right-hand side of the equation, we get:
${{\left( a+b+c \right)}^{3}}={{a}^{3}}+{{b}^{3}}+{{c}^{3}}+{{a}^{2}}\left( b+c \right)+{{b}^{2}}\left( c+a \right)+{{c}^{2}}\left( b+a \right)+2\left( ab+bc+ca \right)\left( a+b+c \right)$
$\Rightarrow {{\left( a+b+c \right)}^{3}}={{a}^{3}}+{{b}^{3}}+{{c}^{3}}+3{{a}^{2}}(b+c)+3{{b}^{2}}(a+c)+3{{c}^{2}}(a+b)+6abc$
Shifting \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\] to left-hand side of the equation and rest of the terms to right-hand side of the equation, we get:
\[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3{{a}^{2}}(b+c)-3{{b}^{2}}(a+c)-3{{c}^{2}}(a+b)-6abc\]
Now, we will subtract $3abc$ from both sides of the equation. So, we get:
$\Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc={{\left( a+b+c \right)}^{3}}-\left[ 3{{a}^{2}}(b+c)+3{{b}^{2}}(a+c)+3{{c}^{2}}(a+b)+9abc \right]$
$\Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc={{\left( a+b+c \right)}^{3}}-\left[ 3{{a}^{2}}b+3{{a}^{2}}c+3abc+3{{b}^{2}}a+3{{b}^{2}}c+3abc+3{{c}^{2}}a+3{{c}^{2}}b+3abc \right]$
Now, on rearranging the terms, we get:
${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc={{\left( a+b+c \right)}^{3}}-\left[ 3{{a}^{2}}b+3{{b}^{2}}a+3abc+3{{b}^{2}}c+3{{c}^{2}}b+3abc+3{{c}^{2}}a+3{{a}^{2}}c+3abc \right]$
Now, taking $3ab,3bc$ and $3ca$ common, and substituting ${{\left( a+b+c \right)}^{3}}=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right) \right)$ , we get:
\[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right) \right)-\left[ 3ab\left( a+b+c \right)+3bc\left( a+b+c \right)+3ca\left( a+b+c \right) \right]\]
Taking $\left( a+b+c \right)$ common, we get
\[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)......(i)\]
Now, when $(a+b+c)=0$ , equation $(i)$ becomes \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\].
Now, we will consider the given problem. We are asked to find the value of $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)$ without actually calculating the cubes. Comparing ${{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}}$ with \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\], we get $a=-12,b=7$ and $c=5$. On calculating the value of $(a+b+c)$ , we can see $a+b+c=-12+7+5=0$. As $a+b+c=0$ , so, \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\].
Or, $-\left( {{a}^{3}}+{{b}^{3}}+{{c}^{3}} \right)=-3abc$.
So, $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)=-3\times \left( -12 \right)\times 7\times 5=1260$.
Hence, the value of $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)$ is equal to $1260$.
Note: Most of the students remember the formula \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\], but do not remember the condition for the formula to be true, i.e. $(a+b+c)=0$ which can be very dangerous. So, instead of remembering \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\], it is better to remember the complete formula \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)\]. It is true for any condition and thus, the student will be on a safe side and can use this formula in any condition.
Complete step-by-step answer:
Let’s consider three numbers $a,b$ and $c$, such that \[a+b+c=0\]. We have to find the value of \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\].
We know \[{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right)\]. We can write \[{{\left( a+b+c \right)}^{3}}\] as \[{{\left( a+b+c \right)}^{2}}\left( a+b+c \right)\].
So, ${{\left( a+b+c \right)}^{3}}=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right) \right)$ .
On multiplying the terms in the right-hand side of the equation, we get:
${{\left( a+b+c \right)}^{3}}={{a}^{3}}+{{b}^{3}}+{{c}^{3}}+{{a}^{2}}\left( b+c \right)+{{b}^{2}}\left( c+a \right)+{{c}^{2}}\left( b+a \right)+2\left( ab+bc+ca \right)\left( a+b+c \right)$
$\Rightarrow {{\left( a+b+c \right)}^{3}}={{a}^{3}}+{{b}^{3}}+{{c}^{3}}+3{{a}^{2}}(b+c)+3{{b}^{2}}(a+c)+3{{c}^{2}}(a+b)+6abc$
Shifting \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\] to left-hand side of the equation and rest of the terms to right-hand side of the equation, we get:
\[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3{{a}^{2}}(b+c)-3{{b}^{2}}(a+c)-3{{c}^{2}}(a+b)-6abc\]
Now, we will subtract $3abc$ from both sides of the equation. So, we get:
$\Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc={{\left( a+b+c \right)}^{3}}-\left[ 3{{a}^{2}}(b+c)+3{{b}^{2}}(a+c)+3{{c}^{2}}(a+b)+9abc \right]$
$\Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc={{\left( a+b+c \right)}^{3}}-\left[ 3{{a}^{2}}b+3{{a}^{2}}c+3abc+3{{b}^{2}}a+3{{b}^{2}}c+3abc+3{{c}^{2}}a+3{{c}^{2}}b+3abc \right]$
Now, on rearranging the terms, we get:
${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc={{\left( a+b+c \right)}^{3}}-\left[ 3{{a}^{2}}b+3{{b}^{2}}a+3abc+3{{b}^{2}}c+3{{c}^{2}}b+3abc+3{{c}^{2}}a+3{{a}^{2}}c+3abc \right]$
Now, taking $3ab,3bc$ and $3ca$ common, and substituting ${{\left( a+b+c \right)}^{3}}=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right) \right)$ , we get:
\[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right) \right)-\left[ 3ab\left( a+b+c \right)+3bc\left( a+b+c \right)+3ca\left( a+b+c \right) \right]\]
Taking $\left( a+b+c \right)$ common, we get
\[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)......(i)\]
Now, when $(a+b+c)=0$ , equation $(i)$ becomes \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\].
Now, we will consider the given problem. We are asked to find the value of $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)$ without actually calculating the cubes. Comparing ${{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}}$ with \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\], we get $a=-12,b=7$ and $c=5$. On calculating the value of $(a+b+c)$ , we can see $a+b+c=-12+7+5=0$. As $a+b+c=0$ , so, \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\].
Or, $-\left( {{a}^{3}}+{{b}^{3}}+{{c}^{3}} \right)=-3abc$.
So, $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)=-3\times \left( -12 \right)\times 7\times 5=1260$.
Hence, the value of $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)$ is equal to $1260$.
Note: Most of the students remember the formula \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\], but do not remember the condition for the formula to be true, i.e. $(a+b+c)=0$ which can be very dangerous. So, instead of remembering \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\], it is better to remember the complete formula \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)\]. It is true for any condition and thus, the student will be on a safe side and can use this formula in any condition.
Recently Updated Pages
Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Which planet is known as the red planet aMercury bMars class 6 social science CBSE

Which state has the longest coastline in India A Tamil class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE
