Without actually calculating the cubes , find the value of the following: $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)$ .
Last updated date: 22nd Mar 2023
•
Total views: 305.4k
•
Views today: 5.84k
Answer
305.4k+ views
Hint: The given problem is related to algebraic identities. $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)$ is of the form \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\] and here \[a+b+c=0\]. So, the identity \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\], when \[a+b+c=0\], is applicable here.
Complete step-by-step answer:
Let’s consider three numbers $a,b$ and $c$, such that \[a+b+c=0\]. We have to find the value of \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\].
We know \[{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right)\]. We can write \[{{\left( a+b+c \right)}^{3}}\] as \[{{\left( a+b+c \right)}^{2}}\left( a+b+c \right)\].
So, ${{\left( a+b+c \right)}^{3}}=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right) \right)$ .
On multiplying the terms in the right-hand side of the equation, we get:
${{\left( a+b+c \right)}^{3}}={{a}^{3}}+{{b}^{3}}+{{c}^{3}}+{{a}^{2}}\left( b+c \right)+{{b}^{2}}\left( c+a \right)+{{c}^{2}}\left( b+a \right)+2\left( ab+bc+ca \right)\left( a+b+c \right)$
$\Rightarrow {{\left( a+b+c \right)}^{3}}={{a}^{3}}+{{b}^{3}}+{{c}^{3}}+3{{a}^{2}}(b+c)+3{{b}^{2}}(a+c)+3{{c}^{2}}(a+b)+6abc$
Shifting \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\] to left-hand side of the equation and rest of the terms to right-hand side of the equation, we get:
\[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3{{a}^{2}}(b+c)-3{{b}^{2}}(a+c)-3{{c}^{2}}(a+b)-6abc\]
Now, we will subtract $3abc$ from both sides of the equation. So, we get:
$\Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc={{\left( a+b+c \right)}^{3}}-\left[ 3{{a}^{2}}(b+c)+3{{b}^{2}}(a+c)+3{{c}^{2}}(a+b)+9abc \right]$
$\Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc={{\left( a+b+c \right)}^{3}}-\left[ 3{{a}^{2}}b+3{{a}^{2}}c+3abc+3{{b}^{2}}a+3{{b}^{2}}c+3abc+3{{c}^{2}}a+3{{c}^{2}}b+3abc \right]$
Now, on rearranging the terms, we get:
${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc={{\left( a+b+c \right)}^{3}}-\left[ 3{{a}^{2}}b+3{{b}^{2}}a+3abc+3{{b}^{2}}c+3{{c}^{2}}b+3abc+3{{c}^{2}}a+3{{a}^{2}}c+3abc \right]$
Now, taking $3ab,3bc$ and $3ca$ common, and substituting ${{\left( a+b+c \right)}^{3}}=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right) \right)$ , we get:
\[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right) \right)-\left[ 3ab\left( a+b+c \right)+3bc\left( a+b+c \right)+3ca\left( a+b+c \right) \right]\]
Taking $\left( a+b+c \right)$ common, we get
\[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)......(i)\]
Now, when $(a+b+c)=0$ , equation $(i)$ becomes \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\].
Now, we will consider the given problem. We are asked to find the value of $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)$ without actually calculating the cubes. Comparing ${{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}}$ with \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\], we get $a=-12,b=7$ and $c=5$. On calculating the value of $(a+b+c)$ , we can see $a+b+c=-12+7+5=0$. As $a+b+c=0$ , so, \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\].
Or, $-\left( {{a}^{3}}+{{b}^{3}}+{{c}^{3}} \right)=-3abc$.
So, $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)=-3\times \left( -12 \right)\times 7\times 5=1260$.
Hence, the value of $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)$ is equal to $1260$.
Note: Most of the students remember the formula \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\], but do not remember the condition for the formula to be true, i.e. $(a+b+c)=0$ which can be very dangerous. So, instead of remembering \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\], it is better to remember the complete formula \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)\]. It is true for any condition and thus, the student will be on a safe side and can use this formula in any condition.
Complete step-by-step answer:
Let’s consider three numbers $a,b$ and $c$, such that \[a+b+c=0\]. We have to find the value of \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\].
We know \[{{\left( a+b+c \right)}^{2}}={{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right)\]. We can write \[{{\left( a+b+c \right)}^{3}}\] as \[{{\left( a+b+c \right)}^{2}}\left( a+b+c \right)\].
So, ${{\left( a+b+c \right)}^{3}}=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right) \right)$ .
On multiplying the terms in the right-hand side of the equation, we get:
${{\left( a+b+c \right)}^{3}}={{a}^{3}}+{{b}^{3}}+{{c}^{3}}+{{a}^{2}}\left( b+c \right)+{{b}^{2}}\left( c+a \right)+{{c}^{2}}\left( b+a \right)+2\left( ab+bc+ca \right)\left( a+b+c \right)$
$\Rightarrow {{\left( a+b+c \right)}^{3}}={{a}^{3}}+{{b}^{3}}+{{c}^{3}}+3{{a}^{2}}(b+c)+3{{b}^{2}}(a+c)+3{{c}^{2}}(a+b)+6abc$
Shifting \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\] to left-hand side of the equation and rest of the terms to right-hand side of the equation, we get:
\[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}={{\left( a+b+c \right)}^{3}}-3{{a}^{2}}(b+c)-3{{b}^{2}}(a+c)-3{{c}^{2}}(a+b)-6abc\]
Now, we will subtract $3abc$ from both sides of the equation. So, we get:
$\Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc={{\left( a+b+c \right)}^{3}}-\left[ 3{{a}^{2}}(b+c)+3{{b}^{2}}(a+c)+3{{c}^{2}}(a+b)+9abc \right]$
$\Rightarrow {{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc={{\left( a+b+c \right)}^{3}}-\left[ 3{{a}^{2}}b+3{{a}^{2}}c+3abc+3{{b}^{2}}a+3{{b}^{2}}c+3abc+3{{c}^{2}}a+3{{c}^{2}}b+3abc \right]$
Now, on rearranging the terms, we get:
${{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc={{\left( a+b+c \right)}^{3}}-\left[ 3{{a}^{2}}b+3{{b}^{2}}a+3abc+3{{b}^{2}}c+3{{c}^{2}}b+3abc+3{{c}^{2}}a+3{{a}^{2}}c+3abc \right]$
Now, taking $3ab,3bc$ and $3ca$ common, and substituting ${{\left( a+b+c \right)}^{3}}=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right) \right)$ , we get:
\[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2\left( ab+bc+ca \right) \right)-\left[ 3ab\left( a+b+c \right)+3bc\left( a+b+c \right)+3ca\left( a+b+c \right) \right]\]
Taking $\left( a+b+c \right)$ common, we get
\[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)......(i)\]
Now, when $(a+b+c)=0$ , equation $(i)$ becomes \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\].
Now, we will consider the given problem. We are asked to find the value of $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)$ without actually calculating the cubes. Comparing ${{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}}$ with \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}\], we get $a=-12,b=7$ and $c=5$. On calculating the value of $(a+b+c)$ , we can see $a+b+c=-12+7+5=0$. As $a+b+c=0$ , so, \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\].
Or, $-\left( {{a}^{3}}+{{b}^{3}}+{{c}^{3}} \right)=-3abc$.
So, $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)=-3\times \left( -12 \right)\times 7\times 5=1260$.
Hence, the value of $-\left( {{\left( -12 \right)}^{3}}+{{\left( 7 \right)}^{3}}+{{\left( 5 \right)}^{3}} \right)$ is equal to $1260$.
Note: Most of the students remember the formula \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\], but do not remember the condition for the formula to be true, i.e. $(a+b+c)=0$ which can be very dangerous. So, instead of remembering \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=0\], it is better to remember the complete formula \[{{a}^{3}}+{{b}^{3}}+{{c}^{3}}-3abc=\left( a+b+c \right)\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-ab-bc-ca \right)\]. It is true for any condition and thus, the student will be on a safe side and can use this formula in any condition.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India
