
Within what respective limits must \[\dfrac{A}{2}\] lies when
1). \[2\sin \dfrac{A}{2} = \sqrt {1 + \sin A} + \sqrt {1 - \sin A} \]
2). \[2\sin \dfrac{A}{2} = - \sqrt {1 + \sin A} + \sqrt {1 - \sin A} \]
3). \[2\sin \dfrac{A}{2} = \sqrt {1 + \sin A} - \sqrt {1 - \sin A} \] and
4). \[2\cos \dfrac{A}{2} = \sqrt {1 + \sin A} - \sqrt {1 - \sin A} \]
Answer
483.9k+ views
Hint: To solve this question we have to convert \[\sin A\] into the half-angle formula and put the values in the options and simplify all those. If the right-hand side is equal to the left-hand side then that option is the correct answer. Use the trigonometry property in the place of \[1\] then try to make it a perfect square and take them outside of the root.
Complete step-by-step solution:
Given,
Few options are given
\[2\sin \dfrac{A}{2} = \sqrt {1 + \sin A} + \sqrt {1 - \sin A} \]
\[2\sin \dfrac{A}{2} = - \sqrt {1 + \sin A} + \sqrt {1 - \sin A} \]
\[2\sin \dfrac{A}{2} = \sqrt {1 + \sin A} - \sqrt {1 - \sin A} \] and
\[2\cos \dfrac{A}{2} = \sqrt {1 + \sin A} - \sqrt {1 - \sin A} \]
To find,
which option is correct;
Here, all these options take a look to the right hand side then we observe that only \[\sqrt {1 + \sin A} \] and \[\sqrt {1 - \sin A} \] are there. All other things are the different mathematical operators are used at different operators.
So, applying formula on only \[\sqrt {1 + \sin A} \] and \[\sqrt {1 - \sin A} \]
First we solve,
\[\sqrt {1 + \sin A} \]
Let this be \[a\]
\[a = \sqrt {1 + \sin A} \]
On putting the identity \[1 = {\sin ^2}\dfrac{A}{2} + {\cos ^2}\dfrac{A}{2}\] and half angle of \[\sin A\]
\[a = \sqrt {{{\sin }^2}\dfrac{A}{2} + {{\cos }^2}\dfrac{A}{2} + 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}} \] (\[\sin A = 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}\])
On making the terms in the form of \[{(a + b)^2}\]
\[a = \sqrt {{{(\sin \dfrac{A}{2} + \cos \dfrac{A}{2})}^2}} \]
Taking the terms outside of bracket
\[a = \sin \dfrac{A}{2} + \cos \dfrac{A}{2}\]
Again put the value of \[a\]
\[\sqrt {1 + \sin A} = \sin \dfrac{A}{2} + \cos \dfrac{A}{2}\] …………………………(i)
Now we solve
\[\sqrt {1 - \sin A} \]
Let, this be \[b\]
\[b = \sqrt {1 - \sin A} \]
On putting the identity \[1 = {\sin ^2}\dfrac{A}{2} + {\cos ^2}\dfrac{A}{2}\] and half angle of \[\sin A\]
\[b = \sqrt {{{\sin }^2}\dfrac{A}{2} + {{\cos }^2}\dfrac{A}{2} - 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}} \] (\[\sin A = 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}\])
On making the terms in the form of \[{(a - b)^2}\]
\[b = \sqrt {{{(\sin \dfrac{A}{2} - \cos \dfrac{A}{2})}^2}} \]
Taking the terms outside of bracket
\[b = \sin \dfrac{A}{2} - \cos \dfrac{A}{2}\]
Again put the value of \[a\]
\[\sqrt {1 - \sin A} = \sin \dfrac{A}{2} - \cos \dfrac{A}{2}\] ……………………(ii)
Option 1.
\[2\sin \dfrac{A}{2} = \sqrt {1 + \sin A} + \sqrt {1 - \sin A} \]
Putting the values form equation (i) and (ii)
\[2\sin \dfrac{A}{2} = \sin \dfrac{A}{2} + \cos \dfrac{A}{2} + \sin \dfrac{A}{2} - \cos \dfrac{A}{2}\]
On further solving
\[2\sin \dfrac{A}{2} = 2\sin \dfrac{A}{2}\]
Option 1 is the correct answer
Option 2.
\[2\sin \dfrac{A}{2} = - \sqrt {1 + \sin A} + \sqrt {1 - \sin A} \]
Putting the values form equation (i) and (ii)
\[2\sin \dfrac{A}{2} = - (\sin \dfrac{A}{2} + \cos \dfrac{A}{2}) + \sin \dfrac{A}{2} - \cos \dfrac{A}{2}\]
On further solving
\[2\sin \dfrac{A}{2} = - 2\cos \dfrac{A}{2}\]
Option 2 is not the correct answer
Option 3.
\[2\sin \dfrac{A}{2} = \sqrt {1 + \sin A} - \sqrt {1 - \sin A} \]
Putting the values form equation (i) and (ii)
\[2\sin \dfrac{A}{2} = \sin \dfrac{A}{2} + \cos \dfrac{A}{2} - (\sin \dfrac{A}{2} - \cos \dfrac{A}{2})\]
On further solving
\[2\sin \dfrac{A}{2} = 2\cos \dfrac{A}{2}\]
Option 3 is not the correct answer but the answer is matched with option 4 so option 4 is also the correct answer
Final answer:
Option 1 and option 4 both are correct.
Note: To solve these types of questions we have to use the property of trigonometry and must know all the identity and formulas of trigonometry and have a good practice to use all the formulas. In this particular question, we use two formulas of trigonometry. Make the term inside the root a perfect square.
Complete step-by-step solution:
Given,
Few options are given
\[2\sin \dfrac{A}{2} = \sqrt {1 + \sin A} + \sqrt {1 - \sin A} \]
\[2\sin \dfrac{A}{2} = - \sqrt {1 + \sin A} + \sqrt {1 - \sin A} \]
\[2\sin \dfrac{A}{2} = \sqrt {1 + \sin A} - \sqrt {1 - \sin A} \] and
\[2\cos \dfrac{A}{2} = \sqrt {1 + \sin A} - \sqrt {1 - \sin A} \]
To find,
which option is correct;
Here, all these options take a look to the right hand side then we observe that only \[\sqrt {1 + \sin A} \] and \[\sqrt {1 - \sin A} \] are there. All other things are the different mathematical operators are used at different operators.
So, applying formula on only \[\sqrt {1 + \sin A} \] and \[\sqrt {1 - \sin A} \]
First we solve,
\[\sqrt {1 + \sin A} \]
Let this be \[a\]
\[a = \sqrt {1 + \sin A} \]
On putting the identity \[1 = {\sin ^2}\dfrac{A}{2} + {\cos ^2}\dfrac{A}{2}\] and half angle of \[\sin A\]
\[a = \sqrt {{{\sin }^2}\dfrac{A}{2} + {{\cos }^2}\dfrac{A}{2} + 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}} \] (\[\sin A = 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}\])
On making the terms in the form of \[{(a + b)^2}\]
\[a = \sqrt {{{(\sin \dfrac{A}{2} + \cos \dfrac{A}{2})}^2}} \]
Taking the terms outside of bracket
\[a = \sin \dfrac{A}{2} + \cos \dfrac{A}{2}\]
Again put the value of \[a\]
\[\sqrt {1 + \sin A} = \sin \dfrac{A}{2} + \cos \dfrac{A}{2}\] …………………………(i)
Now we solve
\[\sqrt {1 - \sin A} \]
Let, this be \[b\]
\[b = \sqrt {1 - \sin A} \]
On putting the identity \[1 = {\sin ^2}\dfrac{A}{2} + {\cos ^2}\dfrac{A}{2}\] and half angle of \[\sin A\]
\[b = \sqrt {{{\sin }^2}\dfrac{A}{2} + {{\cos }^2}\dfrac{A}{2} - 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}} \] (\[\sin A = 2\sin \dfrac{A}{2}\cos \dfrac{A}{2}\])
On making the terms in the form of \[{(a - b)^2}\]
\[b = \sqrt {{{(\sin \dfrac{A}{2} - \cos \dfrac{A}{2})}^2}} \]
Taking the terms outside of bracket
\[b = \sin \dfrac{A}{2} - \cos \dfrac{A}{2}\]
Again put the value of \[a\]
\[\sqrt {1 - \sin A} = \sin \dfrac{A}{2} - \cos \dfrac{A}{2}\] ……………………(ii)
Option 1.
\[2\sin \dfrac{A}{2} = \sqrt {1 + \sin A} + \sqrt {1 - \sin A} \]
Putting the values form equation (i) and (ii)
\[2\sin \dfrac{A}{2} = \sin \dfrac{A}{2} + \cos \dfrac{A}{2} + \sin \dfrac{A}{2} - \cos \dfrac{A}{2}\]
On further solving
\[2\sin \dfrac{A}{2} = 2\sin \dfrac{A}{2}\]
Option 1 is the correct answer
Option 2.
\[2\sin \dfrac{A}{2} = - \sqrt {1 + \sin A} + \sqrt {1 - \sin A} \]
Putting the values form equation (i) and (ii)
\[2\sin \dfrac{A}{2} = - (\sin \dfrac{A}{2} + \cos \dfrac{A}{2}) + \sin \dfrac{A}{2} - \cos \dfrac{A}{2}\]
On further solving
\[2\sin \dfrac{A}{2} = - 2\cos \dfrac{A}{2}\]
Option 2 is not the correct answer
Option 3.
\[2\sin \dfrac{A}{2} = \sqrt {1 + \sin A} - \sqrt {1 - \sin A} \]
Putting the values form equation (i) and (ii)
\[2\sin \dfrac{A}{2} = \sin \dfrac{A}{2} + \cos \dfrac{A}{2} - (\sin \dfrac{A}{2} - \cos \dfrac{A}{2})\]
On further solving
\[2\sin \dfrac{A}{2} = 2\cos \dfrac{A}{2}\]
Option 3 is not the correct answer but the answer is matched with option 4 so option 4 is also the correct answer
Final answer:
Option 1 and option 4 both are correct.
Note: To solve these types of questions we have to use the property of trigonometry and must know all the identity and formulas of trigonometry and have a good practice to use all the formulas. In this particular question, we use two formulas of trigonometry. Make the term inside the root a perfect square.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

