
Which term of following GP is 256.
\[2\],\[2\sqrt 2 \],\[4\]…………..
Answer
606k+ views
Hint: In the questions we have to find the common ratio and then using the formula of the nth term of GP we can find which position the term 256 holds by equating it.
Complete step-by-step answer:
In the given series let's name the terms first i.e. \[{a_1}\] = 2, \[{a_2}\] =\[2\sqrt 2 \], \[{a_3}\]= 4
Let 256 be the \[{a_n}\]th term
Now, the common ratio \[r\] is given by
\[r = \dfrac{{{a_2}}}{{{a_1}}} = \dfrac{{{a_3}}}{{{a_2}}} = .......... = \dfrac{{{a_n}}}{{{a_{n - 1}}}}\]
∴ \[r\]=\[\dfrac{{2\sqrt 2 }}{2}\]=\[\sqrt 2 \]
Using the formula of nth term
\[{a_n} = a{r^{n - 1}}\]
\[ \Rightarrow 256 = 2{\left( {\sqrt 2 } \right)^{n - 1}}\]
\[ \Rightarrow 128 = {\left( {\sqrt 2 } \right)^{n - 1}}\]
Converting 128 in terms of power of 2
\[ \Rightarrow {2^7} = {2^{\dfrac{{n - 1}}{2}}}\]
Since, bases are equal, therefore powers can also be equated.
\[ \Rightarrow 7 = \dfrac{{n - 1}}{2}\]
\[ \Rightarrow 14 = n - 1\]
\[\therefore n = 15\]
∴ 256 is the 15th term.
Note: Geometric progression is a sequence of numbers where each new term after the first is obtained by multiplying the preceding term by a constant r called common ratio. The common ratio is given by the formula \[r = \dfrac{{{a_2}}}{{{a_1}}} = \dfrac{{{a_3}}}{{{a_2}}} = .......... = \dfrac{{{a_n}}}{{{a_{n - 1}}}}\].
Complete step-by-step answer:
In the given series let's name the terms first i.e. \[{a_1}\] = 2, \[{a_2}\] =\[2\sqrt 2 \], \[{a_3}\]= 4
Let 256 be the \[{a_n}\]th term
Now, the common ratio \[r\] is given by
\[r = \dfrac{{{a_2}}}{{{a_1}}} = \dfrac{{{a_3}}}{{{a_2}}} = .......... = \dfrac{{{a_n}}}{{{a_{n - 1}}}}\]
∴ \[r\]=\[\dfrac{{2\sqrt 2 }}{2}\]=\[\sqrt 2 \]
Using the formula of nth term
\[{a_n} = a{r^{n - 1}}\]
\[ \Rightarrow 256 = 2{\left( {\sqrt 2 } \right)^{n - 1}}\]
\[ \Rightarrow 128 = {\left( {\sqrt 2 } \right)^{n - 1}}\]
Converting 128 in terms of power of 2
\[ \Rightarrow {2^7} = {2^{\dfrac{{n - 1}}{2}}}\]
Since, bases are equal, therefore powers can also be equated.
\[ \Rightarrow 7 = \dfrac{{n - 1}}{2}\]
\[ \Rightarrow 14 = n - 1\]
\[\therefore n = 15\]
∴ 256 is the 15th term.
Note: Geometric progression is a sequence of numbers where each new term after the first is obtained by multiplying the preceding term by a constant r called common ratio. The common ratio is given by the formula \[r = \dfrac{{{a_2}}}{{{a_1}}} = \dfrac{{{a_3}}}{{{a_2}}} = .......... = \dfrac{{{a_n}}}{{{a_{n - 1}}}}\].
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

What is periodicity class 11 chemistry CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

Mention the basic forces in nature class 11 physics CBSE

