
Which term of AP: 22, 19, 16 ..., is its first negative term?
Answer
599.1k+ views
Hint: The \[{{n}^{th}}\] term of an arithmetic progression can be written as follows
\[=a+(n-1)d\]
(Where a is the first term of an arithmetic progression and d is the common difference of the arithmetic progression)
The first term of an arithmetic progression which is negative has to be less than 0 and so for finding it, we can simply form an inequality to get to the solution.
Complete step-by-step solution -
As mentioned in the question, we have to find the first negative term of the given arithmetic progression.
Now, as we know the formula for finding the \[{{n}^{th}}\] term of an arithmetic progression that is mentioned in the hint, we can write the general formula for this given arithmetic progression as follows
\[\begin{align}
& =a+(n-1)d \\
& =22+(n-1)(-3) \\
& =22-3n+3 \\
& =-3n+25 \\
\end{align}\]
(As in the arithmetic progression that is given, we have the first term as 22 that means a=22 and by subtracting the second and the first term, we get the common difference as -3, that is d=-3 )
Now, for finding the first negative term we can do the following
\[\begin{align}
& -3n+25<0 \\
& 25<3n \\
& n>\dfrac{25}{3} \\
& n>8.334 \\
\end{align}\]
Hence, the 9th term of the given series will be the first negative term of this arithmetic progression.
Note: The students can make an error if they don’t know how to write the general term of an arithmetic progression which can be written as follows
\[\begin{align}
& general\ term=a+(n-1)d \\
& general\ term=(a+d)+nd \\
\end{align}\]
\[=a+(n-1)d\]
(Where a is the first term of an arithmetic progression and d is the common difference of the arithmetic progression)
The first term of an arithmetic progression which is negative has to be less than 0 and so for finding it, we can simply form an inequality to get to the solution.
Complete step-by-step solution -
As mentioned in the question, we have to find the first negative term of the given arithmetic progression.
Now, as we know the formula for finding the \[{{n}^{th}}\] term of an arithmetic progression that is mentioned in the hint, we can write the general formula for this given arithmetic progression as follows
\[\begin{align}
& =a+(n-1)d \\
& =22+(n-1)(-3) \\
& =22-3n+3 \\
& =-3n+25 \\
\end{align}\]
(As in the arithmetic progression that is given, we have the first term as 22 that means a=22 and by subtracting the second and the first term, we get the common difference as -3, that is d=-3 )
Now, for finding the first negative term we can do the following
\[\begin{align}
& -3n+25<0 \\
& 25<3n \\
& n>\dfrac{25}{3} \\
& n>8.334 \\
\end{align}\]
Hence, the 9th term of the given series will be the first negative term of this arithmetic progression.
Note: The students can make an error if they don’t know how to write the general term of an arithmetic progression which can be written as follows
\[\begin{align}
& general\ term=a+(n-1)d \\
& general\ term=(a+d)+nd \\
\end{align}\]
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Which of the following does not have a fundamental class 10 physics CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

State BPT theorem and prove it class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

Write the difference between soap and detergent class 10 chemistry CBSE

