
Which one of the following is true?
A. $\left( {{\text{1 + }}\dfrac{{\text{1}}}{{\text{n}}}} \right){\text{ < }}{{\text{n}}^{\text{2}}}$, n is a positive integer.
B. $\left( {{\text{1 + }}\dfrac{{\text{1}}}{{\text{n}}}} \right){\text{ < 2}}$, n is a positive integer.
C. $\left( {{\text{1 + }}\dfrac{{\text{1}}}{{\text{n}}}} \right){\text{ < }}{{\text{n}}^3}$, n is a positive integer.
D. $\left( {{\text{1 + }}\dfrac{{\text{1}}}{{\text{n}}}} \right){\text{ }} \geqslant {\text{2}}$, n is a positive integer.
E. $\left( {{\text{1 + }}\dfrac{{\text{1}}}{{\text{n}}}} \right){\text{ = }}{{\text{n}}^{\text{2}}} + n + 3$, n is a positive integer.
Answer
596.1k+ views
Hint: In the question, to get the correct answer, we have to proceed by going through the options. Using the relation given, we will solve the particular option and then after take the next option and check it into the corresponding mathematical expression and then check whether it is correct or not.
Complete step-by-step answer:
First of all, we will write the given relation:
$\left( {{\text{1 + }}\dfrac{{\text{1}}}{{\text{n}}}} \right){\text{ < }}{{\text{n}}^{\text{2}}}$, n is a positive integer.
Take any value of integer for given n.
Let, n=1
Put, this value and check the given relation:
$ \Rightarrow $$\left( {{\text{1 + }}\dfrac{{\text{1}}}{{\text{n}}}} \right){\text{ < }}{{\text{n}}^{\text{2}}}$
$ \Rightarrow $2 < 1
So, this is not a correct relation.
Let us take Second option:
$ \Rightarrow $$\left( {{\text{1 + }}\dfrac{{\text{1}}}{{\text{n}}}} \right){\text{ < 2}}$
Take any value of integer for given n.
Let, n=1
Put, this value and check the given relation:
$ \Rightarrow $2 < 2
So, this is not a correct relation.
Let us take third option:
$ \Rightarrow $$\left( {{\text{1 + }}\dfrac{{\text{1}}}{{\text{n}}}} \right){\text{ < }}{{\text{n}}^3}$
Take any value of integer for given n.
Let, n=1
Put, this value and check the given relation:
$ \Rightarrow $2 < 1
So, this is not a correct relation.
Let us take fourth option:
$ \Rightarrow $$\left( {{\text{1 + }}\dfrac{{\text{1}}}{{\text{n}}}} \right){\text{ }} \geqslant {\text{2}}$
Take any value of integer for given n.
Let, n=1
Put, this value and check the given relation:
$ \Rightarrow $2 $ \geqslant $2
So, this is a correct relation.
Let us take fifth option:
$ \Rightarrow $$\left( {{\text{1 + }}\dfrac{{\text{1}}}{{\text{n}}}} \right){\text{ = }}{{\text{n}}^{\text{2}}}{\text{ + n + 3}}$
Take any value of integer for given n.
Let, n=1
Put, this value and check the given relation:
$ \Rightarrow $2 = 5
So, this is not a correct relation.
Thus, by analysis of all the given options, we concluded that the fourth option is a correct relation.
Therefore, option (D) is the correct answer.
Note: In this question, we will need to know the basics of integers. As we know Integers are a bigger collection of numbers that include whole numbers, negative numbers, and zero. Or we say an integer is a whole number (not a fractional number) that can be positive, negative, or zero. Examples of integers are: -5, 1, 5, 8.
Complete step-by-step answer:
First of all, we will write the given relation:
$\left( {{\text{1 + }}\dfrac{{\text{1}}}{{\text{n}}}} \right){\text{ < }}{{\text{n}}^{\text{2}}}$, n is a positive integer.
Take any value of integer for given n.
Let, n=1
Put, this value and check the given relation:
$ \Rightarrow $$\left( {{\text{1 + }}\dfrac{{\text{1}}}{{\text{n}}}} \right){\text{ < }}{{\text{n}}^{\text{2}}}$
$ \Rightarrow $2 < 1
So, this is not a correct relation.
Let us take Second option:
$ \Rightarrow $$\left( {{\text{1 + }}\dfrac{{\text{1}}}{{\text{n}}}} \right){\text{ < 2}}$
Take any value of integer for given n.
Let, n=1
Put, this value and check the given relation:
$ \Rightarrow $2 < 2
So, this is not a correct relation.
Let us take third option:
$ \Rightarrow $$\left( {{\text{1 + }}\dfrac{{\text{1}}}{{\text{n}}}} \right){\text{ < }}{{\text{n}}^3}$
Take any value of integer for given n.
Let, n=1
Put, this value and check the given relation:
$ \Rightarrow $2 < 1
So, this is not a correct relation.
Let us take fourth option:
$ \Rightarrow $$\left( {{\text{1 + }}\dfrac{{\text{1}}}{{\text{n}}}} \right){\text{ }} \geqslant {\text{2}}$
Take any value of integer for given n.
Let, n=1
Put, this value and check the given relation:
$ \Rightarrow $2 $ \geqslant $2
So, this is a correct relation.
Let us take fifth option:
$ \Rightarrow $$\left( {{\text{1 + }}\dfrac{{\text{1}}}{{\text{n}}}} \right){\text{ = }}{{\text{n}}^{\text{2}}}{\text{ + n + 3}}$
Take any value of integer for given n.
Let, n=1
Put, this value and check the given relation:
$ \Rightarrow $2 = 5
So, this is not a correct relation.
Thus, by analysis of all the given options, we concluded that the fourth option is a correct relation.
Therefore, option (D) is the correct answer.
Note: In this question, we will need to know the basics of integers. As we know Integers are a bigger collection of numbers that include whole numbers, negative numbers, and zero. Or we say an integer is a whole number (not a fractional number) that can be positive, negative, or zero. Examples of integers are: -5, 1, 5, 8.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

