
Which one of the following has the maximum number of atoms of oxygen?
A. ${\rm{2}}\;{\rm{g}}\;{\rm{of}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}}$
B. ${\rm{2}}\;{\rm{g}}\;{\rm{of}}\;{\rm{S}}{{\rm{O}}_2}$
C. ${\rm{2}}\;{\rm{g}}\;{\rm{of}}\;{\rm{C}}{{\rm{O}}_2}$
D. ${\rm{2}}\;{\rm{g}}\;{\rm{of}}\;{\rm{CO}}$
Answer
583.8k+ views
Hint:
We know that the number of atoms can be determined by using two quantities one of them is Avogadro’s number and the other one is the respective molar mass of all the species.
Complete step by step solution:
The general formula for determining the number of atoms by using the formula is shown below.
${\rm{Number}}\;{\rm{of}}\;{\rm{atoms}} = \dfrac{{{{\rm{N}}_{\rm{A}}}}}{{{\rm{Molar}}\;{\rm{mass}}}}.......\left( {\rm{I}} \right)$
Where, ${{\rm{N}}_{\rm{A}}}$ is the Avogadro’s constant and the value of it is $6.023 \times {10^{23}}$.
So, the molar mass of water is ${\rm{18}}\;{\rm{g/mol}}$.
The number of atoms of oxygen present in ${\rm{2}}\;{\rm{g}}\;{\rm{of}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}}$ can be calculated by substituting all the respective values in equation (I).
\[
{\rm{Number}}\;{\rm{of}}\;{\rm{atoms}}\;{\rm{for}}\;{\rm{1}}\;{\rm{g}}\;{\rm{of}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}} = \dfrac{{6.023 \times {{10}^{23}}}}{{{\rm{18}}\;{\rm{g/mol}}}}\\
= 0.335 \times {10^{23}}\\
{\rm{Number}}\;{\rm{of}}\;{\rm{atoms}}\;{\rm{for}}\;2\;{\rm{g}}\;{\rm{of}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}} = 0.335 \times {10^{23}} \times 2\\
= 0.67 \times {10^{23}}
\]
So, the molar mass of ${\rm{S}}{{\rm{O}}_{\rm{2}}}$ is ${\rm{64}}\;{\rm{g/mol}}$.
The number of atoms of oxygen present in ${\rm{2}}\;{\rm{g}}\;{\rm{of}}\;{\rm{S}}{{\rm{O}}_2}$ can be calculated by substituting all the respective values in equation (I).
\[
{\rm{Number}}\;{\rm{of}}\;{\rm{atoms}}\;{\rm{for}}\;{\rm{1}}\;{\rm{g}}\;{\rm{of}}\;{\rm{S}}{{\rm{O}}_2} = \dfrac{{6.023 \times {{10}^{23}}}}{{{\rm{64}}\;{\rm{g/mol}}}}\\
= 0.094 \times {10^{23}}\\
{\rm{Number}}\;{\rm{of}}\;{\rm{atoms}}\;{\rm{for}}\;2\;{\rm{g}}\;{\rm{of}}\;{\rm{S}}{{\rm{O}}_2} = 0.094 \times {10^{23}} \times 2\\
= 0.188 \times {10^{23}}
\]
So, the molar mass of ${\rm{C}}{{\rm{O}}_{\rm{2}}}$ is ${\rm{44}}\;{\rm{g/mol}}$.
The number of atoms of oxygen present in ${\rm{2}}\;{\rm{g}}\;{\rm{of}}\;{\rm{C}}{{\rm{O}}_2}$ can be calculated by substituting all the respective values in equation (I).
\[
{\rm{Number}}\;{\rm{of}}\;{\rm{atoms}}\;{\rm{for}}\;{\rm{1}}\;{\rm{g}}\;{\rm{of}}\;{\rm{C}}{{\rm{O}}_2} = \dfrac{{6.023 \times {{10}^{23}}}}{{{\rm{44}}\;{\rm{g/mol}}}}\\
= 0.136 \times {10^{23}}\\
{\rm{Number}}\;{\rm{of}}\;{\rm{atoms}}\;{\rm{for}}\;2\;{\rm{g}}\;{\rm{of}}\;{\rm{C}}{{\rm{O}}_2} = 0.136 \times {10^{23}} \times 2\\
= 0.272 \times {10^{23}}
\]
So, the molar mass of ${\rm{CO}}$ is $28\;{\rm{g/mol}}$.
The number of atoms of oxygen present in ${\rm{2}}\;{\rm{g}}\;{\rm{of}}\;{\rm{CO}}$ can be calculated by substituting all the respective values in equation (I).
\[
{\rm{Number}}\;{\rm{of}}\;{\rm{atoms}}\;{\rm{for}}\;{\rm{1}}\;{\rm{g}}\;{\rm{of}}\;{\rm{CO}} = \dfrac{{6.023 \times {{10}^{23}}}}{{28\;{\rm{g/mol}}}}\\
= 0.215 \times {10^{23}}\\
{\rm{Number}}\;{\rm{of}}\;{\rm{atoms}}\;{\rm{for}}\;2\;{\rm{g}}\;{\rm{of}}\;{\rm{CO}} = 0.215 \times {10^{23}} \times 2\\
= 0.43 \times {10^{23}}
\]
Thus, from the calculated values of all the option we get the maximum number of oxygen present in ${\rm{2g}}\;{\rm{of}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}}$.
Therefore, the correct option for this question is A that is ${\rm{2g}}\;{\rm{of}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}}$
Note:
The Avogadro constant was proposed by renowned Italian scientist named Amedeo Avogadro in $1811$. It is used to identify the no. of molecules or atoms of the species present in a given mass of substance .
We know that the number of atoms can be determined by using two quantities one of them is Avogadro’s number and the other one is the respective molar mass of all the species.
Complete step by step solution:
The general formula for determining the number of atoms by using the formula is shown below.
${\rm{Number}}\;{\rm{of}}\;{\rm{atoms}} = \dfrac{{{{\rm{N}}_{\rm{A}}}}}{{{\rm{Molar}}\;{\rm{mass}}}}.......\left( {\rm{I}} \right)$
Where, ${{\rm{N}}_{\rm{A}}}$ is the Avogadro’s constant and the value of it is $6.023 \times {10^{23}}$.
So, the molar mass of water is ${\rm{18}}\;{\rm{g/mol}}$.
The number of atoms of oxygen present in ${\rm{2}}\;{\rm{g}}\;{\rm{of}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}}$ can be calculated by substituting all the respective values in equation (I).
\[
{\rm{Number}}\;{\rm{of}}\;{\rm{atoms}}\;{\rm{for}}\;{\rm{1}}\;{\rm{g}}\;{\rm{of}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}} = \dfrac{{6.023 \times {{10}^{23}}}}{{{\rm{18}}\;{\rm{g/mol}}}}\\
= 0.335 \times {10^{23}}\\
{\rm{Number}}\;{\rm{of}}\;{\rm{atoms}}\;{\rm{for}}\;2\;{\rm{g}}\;{\rm{of}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}} = 0.335 \times {10^{23}} \times 2\\
= 0.67 \times {10^{23}}
\]
So, the molar mass of ${\rm{S}}{{\rm{O}}_{\rm{2}}}$ is ${\rm{64}}\;{\rm{g/mol}}$.
The number of atoms of oxygen present in ${\rm{2}}\;{\rm{g}}\;{\rm{of}}\;{\rm{S}}{{\rm{O}}_2}$ can be calculated by substituting all the respective values in equation (I).
\[
{\rm{Number}}\;{\rm{of}}\;{\rm{atoms}}\;{\rm{for}}\;{\rm{1}}\;{\rm{g}}\;{\rm{of}}\;{\rm{S}}{{\rm{O}}_2} = \dfrac{{6.023 \times {{10}^{23}}}}{{{\rm{64}}\;{\rm{g/mol}}}}\\
= 0.094 \times {10^{23}}\\
{\rm{Number}}\;{\rm{of}}\;{\rm{atoms}}\;{\rm{for}}\;2\;{\rm{g}}\;{\rm{of}}\;{\rm{S}}{{\rm{O}}_2} = 0.094 \times {10^{23}} \times 2\\
= 0.188 \times {10^{23}}
\]
So, the molar mass of ${\rm{C}}{{\rm{O}}_{\rm{2}}}$ is ${\rm{44}}\;{\rm{g/mol}}$.
The number of atoms of oxygen present in ${\rm{2}}\;{\rm{g}}\;{\rm{of}}\;{\rm{C}}{{\rm{O}}_2}$ can be calculated by substituting all the respective values in equation (I).
\[
{\rm{Number}}\;{\rm{of}}\;{\rm{atoms}}\;{\rm{for}}\;{\rm{1}}\;{\rm{g}}\;{\rm{of}}\;{\rm{C}}{{\rm{O}}_2} = \dfrac{{6.023 \times {{10}^{23}}}}{{{\rm{44}}\;{\rm{g/mol}}}}\\
= 0.136 \times {10^{23}}\\
{\rm{Number}}\;{\rm{of}}\;{\rm{atoms}}\;{\rm{for}}\;2\;{\rm{g}}\;{\rm{of}}\;{\rm{C}}{{\rm{O}}_2} = 0.136 \times {10^{23}} \times 2\\
= 0.272 \times {10^{23}}
\]
So, the molar mass of ${\rm{CO}}$ is $28\;{\rm{g/mol}}$.
The number of atoms of oxygen present in ${\rm{2}}\;{\rm{g}}\;{\rm{of}}\;{\rm{CO}}$ can be calculated by substituting all the respective values in equation (I).
\[
{\rm{Number}}\;{\rm{of}}\;{\rm{atoms}}\;{\rm{for}}\;{\rm{1}}\;{\rm{g}}\;{\rm{of}}\;{\rm{CO}} = \dfrac{{6.023 \times {{10}^{23}}}}{{28\;{\rm{g/mol}}}}\\
= 0.215 \times {10^{23}}\\
{\rm{Number}}\;{\rm{of}}\;{\rm{atoms}}\;{\rm{for}}\;2\;{\rm{g}}\;{\rm{of}}\;{\rm{CO}} = 0.215 \times {10^{23}} \times 2\\
= 0.43 \times {10^{23}}
\]
Thus, from the calculated values of all the option we get the maximum number of oxygen present in ${\rm{2g}}\;{\rm{of}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}}$.
Therefore, the correct option for this question is A that is ${\rm{2g}}\;{\rm{of}}\;{{\rm{H}}_{\rm{2}}}{\rm{O}}$
Note:
The Avogadro constant was proposed by renowned Italian scientist named Amedeo Avogadro in $1811$. It is used to identify the no. of molecules or atoms of the species present in a given mass of substance .
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

