
Which of the option(s) is/are correct “If one root of \[a{x^2} + bx + c = 0\] be the square of the other, then the value of ${b^3} + a{c^2} + {a^2}c$ is:”
A) $3abc$
B) $ - 3abc$
C) $0$
D) None of these
Answer
587.4k+ views
Hint:Let $a{x^2} + bx + c = 0$ where a,b and c are constants and $a \ne 0$ let $\alpha $and $\beta $are the roots of this equation then : Sum of the roots = $\alpha + \beta = - \dfrac{b}{a}$ and Product of the roots= $\alpha \beta = \dfrac{c}{a}$.Consider the equation $a{x^3} + b{x^2} + cx + d = 0$where a,b,c and d are constants and $a \ne 0$ and let $\alpha ,\beta $and $\gamma $are the roots of this equation then: Sum of the roots= $\alpha + \beta + \gamma = \dfrac{{ - b}}{a}$ and Product of the roots= $\alpha \beta \gamma = \dfrac{{ - d}}{a}$.Identity: ${(a + b)^3} = {a^3} + {b^3} + 3ab(a + b)$
Complete step-by-step answer:
According to the question, one root of a quadratic polynomial \[a{x^2} + bx + c\]is square of the other.
So let’s assume its roots are $\alpha $ and ${\alpha ^2}$.
We have to find the value of ${b^3} + a{c^2} + {a^2}c$.
We know that, if and $\beta $are the roots of the quadratic equation $a{x^2} + bx + c = 0$then
Sum of the roots of quadratic equation = $\alpha + \beta = - \dfrac{b}{a}$ and Product of the roots of quadratic equation=$\alpha \beta = \dfrac{c}{a}$.
Here we have roots of the quadratic equation \[a{x^2} + bx + c = 0\]as$\alpha $and${\alpha ^2}$.
$\therefore $The sum of roots of quadratic equation = $\alpha + {\alpha ^2} = - \dfrac{b}{a}$ ……………………….(i) and,
The product of the roots of quadratic equation=$\alpha \times {\alpha ^2} = \dfrac{c}{a}$.
$ \Rightarrow {\alpha ^3} = \dfrac{c}{a}$ ………………………….(ii)
We have to find the value of expression in which we have ${b^3}$.
By cubing equation (i), we get
${(\alpha + {\alpha ^2})^3} = {\left( {\dfrac{{ - b}}{a}} \right)^3}$
By applying the identity: ${(a + b)^3} = {a^3} + {b^3} + 3ab(a + b)$.
Taking $a = \alpha $and$b = {\alpha ^2}$we get,
${\alpha ^3} + {({\alpha ^2})^3} + 3 \times \alpha \times {\alpha ^2}(\alpha + {\alpha ^2}) = \dfrac{{{{( - b)}^3}}}{{{a^3}}}$
By using property of exponents: ${({a^n})^m} = {a^{nm}}$, we get
$ \Rightarrow {\alpha ^3} + {\alpha ^6} + 3{\alpha ^3}(\alpha + {\alpha ^2}) = \dfrac{{{{( - b)}^3}}}{{{a^3}}}$
Again by using property of exponents: ${({a^n})^m} = {a^{nm}}$, we get
$ \Rightarrow {\alpha ^3} + {\alpha ^6} + 3{\alpha ^4} + 3{\alpha ^5} = \dfrac{{ - {b^3}}}{{{a^3}}}$
Now we convert the above equation in the form of $(\alpha + {\alpha ^2})$and ${\alpha ^3}$form.
$ = {\alpha ^3}(1 + {\alpha ^3} + 3\alpha + 3{\alpha ^2}) = \dfrac{{ - {b^3}}}{{{a^3}}}$
By taking 3 common from$3\alpha + 3{\alpha ^2}$, we get
${\alpha ^3}[1 + {\alpha ^3} + 3(\alpha + {\alpha ^2})] = \dfrac{{ - {b^3}}}{{{a^3}}}$ ………………………(iii)
So now substitute the values in the above equation from equation (i) and (ii).
We have, $\dfrac{c}{a}\left\{ {1 + \dfrac{c}{a} + 3\left( {\dfrac{{ - b}}{a}} \right)} \right\} = \dfrac{{ - {b^3}}}{{{a^3}}}$
Solving the bracket first, we get
$ \Rightarrow \dfrac{c}{a} + \dfrac{{{c^2}}}{{{a^2}}} - \dfrac{{3bc}}{{{a^2}}} = \dfrac{{ - {b^3}}}{{{a^3}}}$
By taking ${a^2}$ as L.C.M
$ \Rightarrow \left( {\dfrac{{ac + {c^2} - 3bc}}{{{a^2}}}} \right) = \dfrac{{ - {b^3}}}{{{a^3}}}$
Now taking ${a^3}$on the L.H.S, we get
$ \Rightarrow {a^2}c + a{c^2} - 3abc = - {b^3}$
Or, ${b^3} + {a^2}c + a{c^2} = 3abc$
So, the correct answer is “Option A”.
Note:Alternative Method:
We can also solve the above question by simply substituting the values of b and c in ${b^3} + a{c^2} + {a^2}c$ as
The sum of roots of quadratic equation = $\alpha + {\alpha ^2} = - \dfrac{b}{a}$
$\therefore b = - a\alpha (1 + \alpha )$
The product of the roots of quadratic equation=$\alpha \times {\alpha ^2} = \dfrac{c}{a}$.
$ \Rightarrow a{\alpha ^3} = c$
Now consider,${b^3} + a{c^2} + {a^2}c$
$ = {( - a\alpha (1 + \alpha ))^3} + {a^2} \times a{\alpha ^3} + a \times {(a{\alpha ^3})^2}$
Solving the bracket first, we get
$ \Rightarrow - {a^3}{\alpha ^3}{(1 + \alpha )^3} + {a^2} \times a{\alpha ^3} + a \times ({a^2}{\alpha ^6})$
Taking ${a^3}{m^3}$and by applying the identity: ${(a + b)^3} = {a^3} + {b^3} + 3ab(a + b)$.
$ = - 3{a^3}{\alpha ^3}(1 + \alpha )\alpha $
$ = - 3a \times a{\alpha ^3} \times a(\alpha + {\alpha ^2})$
As the value of $b = - a\alpha (1 + \alpha )$
$ \Rightarrow - 3ac( - b)$
$ \Rightarrow 3abc$
Or, ${b^3} + {a^2}c + a{c^2} = 3abc$
$\therefore $The Option A is the correct answer.
Complete step-by-step answer:
According to the question, one root of a quadratic polynomial \[a{x^2} + bx + c\]is square of the other.
So let’s assume its roots are $\alpha $ and ${\alpha ^2}$.
We have to find the value of ${b^3} + a{c^2} + {a^2}c$.
We know that, if and $\beta $are the roots of the quadratic equation $a{x^2} + bx + c = 0$then
Sum of the roots of quadratic equation = $\alpha + \beta = - \dfrac{b}{a}$ and Product of the roots of quadratic equation=$\alpha \beta = \dfrac{c}{a}$.
Here we have roots of the quadratic equation \[a{x^2} + bx + c = 0\]as$\alpha $and${\alpha ^2}$.
$\therefore $The sum of roots of quadratic equation = $\alpha + {\alpha ^2} = - \dfrac{b}{a}$ ……………………….(i) and,
The product of the roots of quadratic equation=$\alpha \times {\alpha ^2} = \dfrac{c}{a}$.
$ \Rightarrow {\alpha ^3} = \dfrac{c}{a}$ ………………………….(ii)
We have to find the value of expression in which we have ${b^3}$.
By cubing equation (i), we get
${(\alpha + {\alpha ^2})^3} = {\left( {\dfrac{{ - b}}{a}} \right)^3}$
By applying the identity: ${(a + b)^3} = {a^3} + {b^3} + 3ab(a + b)$.
Taking $a = \alpha $and$b = {\alpha ^2}$we get,
${\alpha ^3} + {({\alpha ^2})^3} + 3 \times \alpha \times {\alpha ^2}(\alpha + {\alpha ^2}) = \dfrac{{{{( - b)}^3}}}{{{a^3}}}$
By using property of exponents: ${({a^n})^m} = {a^{nm}}$, we get
$ \Rightarrow {\alpha ^3} + {\alpha ^6} + 3{\alpha ^3}(\alpha + {\alpha ^2}) = \dfrac{{{{( - b)}^3}}}{{{a^3}}}$
Again by using property of exponents: ${({a^n})^m} = {a^{nm}}$, we get
$ \Rightarrow {\alpha ^3} + {\alpha ^6} + 3{\alpha ^4} + 3{\alpha ^5} = \dfrac{{ - {b^3}}}{{{a^3}}}$
Now we convert the above equation in the form of $(\alpha + {\alpha ^2})$and ${\alpha ^3}$form.
$ = {\alpha ^3}(1 + {\alpha ^3} + 3\alpha + 3{\alpha ^2}) = \dfrac{{ - {b^3}}}{{{a^3}}}$
By taking 3 common from$3\alpha + 3{\alpha ^2}$, we get
${\alpha ^3}[1 + {\alpha ^3} + 3(\alpha + {\alpha ^2})] = \dfrac{{ - {b^3}}}{{{a^3}}}$ ………………………(iii)
So now substitute the values in the above equation from equation (i) and (ii).
We have, $\dfrac{c}{a}\left\{ {1 + \dfrac{c}{a} + 3\left( {\dfrac{{ - b}}{a}} \right)} \right\} = \dfrac{{ - {b^3}}}{{{a^3}}}$
Solving the bracket first, we get
$ \Rightarrow \dfrac{c}{a} + \dfrac{{{c^2}}}{{{a^2}}} - \dfrac{{3bc}}{{{a^2}}} = \dfrac{{ - {b^3}}}{{{a^3}}}$
By taking ${a^2}$ as L.C.M
$ \Rightarrow \left( {\dfrac{{ac + {c^2} - 3bc}}{{{a^2}}}} \right) = \dfrac{{ - {b^3}}}{{{a^3}}}$
Now taking ${a^3}$on the L.H.S, we get
$ \Rightarrow {a^2}c + a{c^2} - 3abc = - {b^3}$
Or, ${b^3} + {a^2}c + a{c^2} = 3abc$
So, the correct answer is “Option A”.
Note:Alternative Method:
We can also solve the above question by simply substituting the values of b and c in ${b^3} + a{c^2} + {a^2}c$ as
The sum of roots of quadratic equation = $\alpha + {\alpha ^2} = - \dfrac{b}{a}$
$\therefore b = - a\alpha (1 + \alpha )$
The product of the roots of quadratic equation=$\alpha \times {\alpha ^2} = \dfrac{c}{a}$.
$ \Rightarrow a{\alpha ^3} = c$
Now consider,${b^3} + a{c^2} + {a^2}c$
$ = {( - a\alpha (1 + \alpha ))^3} + {a^2} \times a{\alpha ^3} + a \times {(a{\alpha ^3})^2}$
Solving the bracket first, we get
$ \Rightarrow - {a^3}{\alpha ^3}{(1 + \alpha )^3} + {a^2} \times a{\alpha ^3} + a \times ({a^2}{\alpha ^6})$
Taking ${a^3}{m^3}$and by applying the identity: ${(a + b)^3} = {a^3} + {b^3} + 3ab(a + b)$.
$ = - 3{a^3}{\alpha ^3}(1 + \alpha )\alpha $
$ = - 3a \times a{\alpha ^3} \times a(\alpha + {\alpha ^2})$
As the value of $b = - a\alpha (1 + \alpha )$
$ \Rightarrow - 3ac( - b)$
$ \Rightarrow 3abc$
Or, ${b^3} + {a^2}c + a{c^2} = 3abc$
$\therefore $The Option A is the correct answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

