
Which of the following physical quantities has the same units as that of impulse?
A) Momentum
B) Force
C) Torque
D) Couple
Answer
579.6k+ views
Hint: Write down the dimensions of given physical quantities, whose physical quantity has the same dimension of impulse. Those have the same unit of impulse.
Complete step by step answer:
Impulse is a certain amount of force you apply for a certain amount of time to cause a change in momentum.
\[\begin{align}
& \operatorname{Im}pulse=Force\times time \\
& \vec{J}=\vec{F}\times \Delta t \\
& \Delta P=F\times \Delta t \\
\end{align}\]
$\Delta P=$ Change in momentum
$F=$ Applied force
$\Delta t=$ Elapsed time
We can make a direct connection between how a force acts on an object over time and the motion of the object. Impulse is useful in the real world, forces are often not constant.
The S.I unit of impulse is $newton-\sec ond$.
$\begin{align}
& J=F\times \Delta t \\
& J=m\times a\times \Delta t=Kg\times \dfrac{m}{{{\sec }^{2}}}\times \sec =Kg\dfrac{m}{\sec } \\
\end{align}$
Dimension of impulse
$\begin{align}
& J=\left[ M \right]\left[ L{{T}^{-2}} \right]\left[ T \right] \\
& J=\left[ ML{{T}^{-1}} \right] \\
\end{align}$
Force:- A force or push or pull upon an object resulting from the objects interaction with another object. Whenever there is an interaction between two objects, there is a force upon each of the objects.
$\begin{align}
& Force=Mass\times Acceleration \\
& F=ma=Kg\times \dfrac{m}{{{\sec }^{2}}} \\
\end{align}$
Dimension of force
$\begin{align}
& F=\left[ M \right]\left[ L{{T}^{-2}} \right] \\
& F=\left[ ML{{T}^{-2}} \right] \\
\end{align}$
The dimension of force is different from the dimension of impulse, so impulse does not have the same unit.
Torque:- Torque is a measure of how much a force acting on an object causes that object to rotate.
$\begin{align}
& \vec{\tau }=\vec{r}\times \vec{F} \\
& \vec{\tau }=rF\sin \theta \\
\end{align}$
$\vec{\tau }=r\times m\times a\times \sin \theta =m\times kg\times \dfrac{m}{{{\sec }^{2}}}=\dfrac{{{m}^{2}}kg}{{{\sec }^{2}}}$
Dimension of Torque
$\begin{align}
& \tau =\dfrac{\left[ M \right]\left[ {{L}^{2}} \right]}{\left[ {{T}^{2}} \right]} \\
& \tau =\left[ M{{L}^{2}}{{T}^{-2}} \right] \\
\end{align}$
Dimension of torque is different to the impulse, so impulse does not represent the Torque.
Momentum:- Momentum product of the mass of a particle and its velocity. Momentum is vector quantity.
Momentum $\vec{P}=m\vec{v}=kg\times \dfrac{m}{\sec }$
Dimension of momentum
$\begin{align}
& P=\left[ M \right]\left[ L{{T}^{-1}} \right] \\
& P=\left[ ML{{T}^{-1}} \right] \\
\end{align}$
So the dimension of momentum is the same as impulse, so momentum has the same unit of impulse.
Note: Two physical quantities can only be equated if they have the same units, here we can solve this question with a shortcut, as impulse is equal to change in momentum we can directly conclude that momentum has the same unit as that of impulse.
Complete step by step answer:
Impulse is a certain amount of force you apply for a certain amount of time to cause a change in momentum.
\[\begin{align}
& \operatorname{Im}pulse=Force\times time \\
& \vec{J}=\vec{F}\times \Delta t \\
& \Delta P=F\times \Delta t \\
\end{align}\]
$\Delta P=$ Change in momentum
$F=$ Applied force
$\Delta t=$ Elapsed time
We can make a direct connection between how a force acts on an object over time and the motion of the object. Impulse is useful in the real world, forces are often not constant.
The S.I unit of impulse is $newton-\sec ond$.
$\begin{align}
& J=F\times \Delta t \\
& J=m\times a\times \Delta t=Kg\times \dfrac{m}{{{\sec }^{2}}}\times \sec =Kg\dfrac{m}{\sec } \\
\end{align}$
Dimension of impulse
$\begin{align}
& J=\left[ M \right]\left[ L{{T}^{-2}} \right]\left[ T \right] \\
& J=\left[ ML{{T}^{-1}} \right] \\
\end{align}$
Force:- A force or push or pull upon an object resulting from the objects interaction with another object. Whenever there is an interaction between two objects, there is a force upon each of the objects.
$\begin{align}
& Force=Mass\times Acceleration \\
& F=ma=Kg\times \dfrac{m}{{{\sec }^{2}}} \\
\end{align}$
Dimension of force
$\begin{align}
& F=\left[ M \right]\left[ L{{T}^{-2}} \right] \\
& F=\left[ ML{{T}^{-2}} \right] \\
\end{align}$
The dimension of force is different from the dimension of impulse, so impulse does not have the same unit.
Torque:- Torque is a measure of how much a force acting on an object causes that object to rotate.
$\begin{align}
& \vec{\tau }=\vec{r}\times \vec{F} \\
& \vec{\tau }=rF\sin \theta \\
\end{align}$
$\vec{\tau }=r\times m\times a\times \sin \theta =m\times kg\times \dfrac{m}{{{\sec }^{2}}}=\dfrac{{{m}^{2}}kg}{{{\sec }^{2}}}$
Dimension of Torque
$\begin{align}
& \tau =\dfrac{\left[ M \right]\left[ {{L}^{2}} \right]}{\left[ {{T}^{2}} \right]} \\
& \tau =\left[ M{{L}^{2}}{{T}^{-2}} \right] \\
\end{align}$
Dimension of torque is different to the impulse, so impulse does not represent the Torque.
Momentum:- Momentum product of the mass of a particle and its velocity. Momentum is vector quantity.
Momentum $\vec{P}=m\vec{v}=kg\times \dfrac{m}{\sec }$
Dimension of momentum
$\begin{align}
& P=\left[ M \right]\left[ L{{T}^{-1}} \right] \\
& P=\left[ ML{{T}^{-1}} \right] \\
\end{align}$
So the dimension of momentum is the same as impulse, so momentum has the same unit of impulse.
Note: Two physical quantities can only be equated if they have the same units, here we can solve this question with a shortcut, as impulse is equal to change in momentum we can directly conclude that momentum has the same unit as that of impulse.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

