
Which of the following pairs of vectors are parallel?
\[\begin{align}
& \text{A}\text{. }\vec{A}=\hat{i}-2\hat{j};\vec{B}=\hat{i}-5\hat{j} \\
& \text{B}\text{. }\vec{A}=\hat{i}-10\hat{j};\vec{B}=2\hat{i}-5\hat{j} \\
& \text{C}\text{. }\vec{A}=\hat{i}-5\hat{j};\vec{B}=\hat{i}-10\hat{j} \\
& \text{D}\text{. }\vec{A}=\hat{i}-5\hat{j};\vec{B}=2\hat{i}-10\hat{j} \\
\end{align}\]
Answer
536.4k+ views
Hint: We are given four pairs of vectors and are asked to find which of the pairs are parallel to each other. To find which of them are parallel, we know that when two vectors are parallel to each other their cross product will be zero. Thus by finding the cross product in all the four cases we will get the solution.
Formula used:
\[\vec{A}\times \vec{B}=\left| A \right|\left| B \right|\sin \theta \]
Complete answer:
In the question we are given four pairs of vectors and we are asked to find which of them are parallel.
We know that when two vectors are parallel to each other their cross product will be zero, i.e. if we have two vectors ‘$\vec{A}$’ and ‘$\vec{B}$’, when they are parallel to each other the angle ‘$\text{ }\!\!\theta\!\!\text{ }$’ between them will be zero, thus we will get,
$\vec{A}\times \vec{B}=\left| A \right|\left| B \right|\sin 0$
Since $\sin 0=0$,
$\Rightarrow \vec{A}\times \vec{B}=\left| A \right|\left| B \right|\times 0$
$\Rightarrow \vec{A}\times \vec{B}=0$
Let us consider the first case given in the question.
The two vectors given are,
\[\vec{A}=\hat{i}-2\hat{j}\text{ and }\vec{B}=\hat{i}-5\hat{j}\]
By taking the cross product of this we will get,
$\vec{A}\times \vec{B}=\left( \hat{i}-2\hat{j} \right)\times \left( \hat{i}-5\hat{j} \right)$
\[\Rightarrow \vec{A}\times \vec{B}=\left| \begin{matrix}
i & j & k \\
1 & -2 & 0 \\
1 & -5 & 0 \\
\end{matrix} \right|\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{i}\left( \left( -2\times 0 \right)-\left( 0\times 5 \right) \right)-\hat{j}\left( \left( 1\times 0 \right)-\left( 1\times 0 \right) \right)+\hat{k}\left( \left( 1\times -5 \right)-\left( -2\times 1 \right) \right)\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{i}\left( 0 \right)-\hat{j}\left( 0 \right)+\hat{k}\left( -5+2 \right)\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{k}\left( -3 \right)\]
$\therefore \vec{A}\times \vec{B}=-3\hat{k}$
Therefore we can see that the cross product here is not zero.
Hence we can say that \[\vec{A}=\hat{i}-2\hat{j}\text{ and }\vec{B}=\hat{i}-5\hat{j}\] are not parallel.
Now let us consider the second case.
The vectors given are,
\[\vec{A}=\hat{i}-10\hat{j}\text{ and }\vec{B}=2\hat{i}-5\hat{j}\]
By taking cross product, we will get
$\vec{A}\times \vec{B}=\left( \hat{i}-10\hat{j} \right)\times \left( 2\hat{i}-5\hat{j} \right)$
\[\Rightarrow \vec{A}\times \vec{B}=\left| \begin{matrix}
i & j & k \\
1 & -10 & 0 \\
2 & -5 & 0 \\
\end{matrix} \right|\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{i}\left( \left( -10\times 0 \right)-\left( 0\times 5 \right) \right)-\hat{j}\left( \left( 1\times 0 \right)-\left( 0\times 2 \right) \right)+\hat{k}\left( \left( 1\times -5 \right)-\left( 2\times -10 \right) \right)\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{i}\left( 0 \right)-\hat{j}\left( 0 \right)+\hat{k}\left( -5-\left( -20 \right) \right)\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{k}\left( -5+20 \right)\]
$\therefore \vec{A}\times \vec{B}=15\hat{k}$
Here also we can see that the cross product is not zero.
Therefore we can say that \[\vec{A}=\hat{i}-10\hat{j}\text{ and }\vec{B}=2\hat{i}-5\hat{j}\]are also not parallel.
In the third case the two vectors given are,
\[\vec{A}=\hat{i}-5\hat{j}\text{ and }\vec{B}=\hat{i}-10\hat{j}\]
By taking the cross product of these two vectors, we will get
$\vec{A}\times \vec{B}=\left( \hat{i}-5\hat{j} \right)\times \left( \hat{i}-10\hat{j} \right)$
\[\Rightarrow \vec{A}\times \vec{B}=\left| \begin{matrix}
i & j & k \\
1 & -5 & 0 \\
1 & -10 & 0 \\
\end{matrix} \right|\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{i}\left( \left( -5\times 0 \right)-\left( 0\times -10 \right) \right)-\hat{j}\left( \left( 1\times 0 \right)-\left( 0\times 1 \right) \right)+\hat{k}\left( \left( 1\times -10 \right)-\left( -5\times 1 \right) \right)\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{i}\left( 0 \right)-\hat{j}\left( 0 \right)+\hat{k}\left( -10-\left( -5 \right) \right)\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{k}\left( -10+5 \right)\]
$\therefore \vec{A}\times \vec{B}=-5\hat{k}$
Therefore the cross product of the two vectors \[\vec{A}=\hat{i}-5\hat{j}\text{ and }\vec{B}=\hat{i}-10\hat{j}\] is also not equal to zero. Hence they are also not parallel.
In the fourth case we are given the two vectors as \[\vec{A}=\hat{i}-5\hat{j}\text{ and }\vec{B}=2\hat{i}-10\hat{j}\].
By taking its cross product we will get,
$\vec{A}\times \vec{B}=\left( \hat{i}-5\hat{j} \right)\times \left( 2\hat{i}-10\hat{j} \right)$
\[\Rightarrow \vec{A}\times \vec{B}=\left| \begin{matrix}
i & j & k \\
1 & -5 & 0 \\
2 & -10 & 0 \\
\end{matrix} \right|\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{i}\left( \left( -5\times 0 \right)-\left( 0\times -10 \right) \right)-\hat{j}\left( \left( 1\times 0 \right)-\left( 0\times 2 \right) \right)+\hat{k}\left( \left( 1\times -10 \right)-\left( -5\times 2 \right) \right)\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{i}\left( 0 \right)-\hat{j}\left( 0 \right)+\hat{k}\left( -10-\left( -10 \right) \right)\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{k}\left( -10+10 \right)\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{k}\left( 0 \right)\]
$\therefore \vec{A}\times \vec{B}=0$
Therefore we can see that the cross product of \[\vec{A}=\hat{i}-5\hat{j}\text{ and }\vec{B}=2\hat{i}-10\hat{j}\] is zero.
We know that when the cross product of two vectors is zero, then those vectors are parallel to each other.
Therefore we can say that \[\vec{A}=\hat{i}-5\hat{j}\text{ and }\vec{B}=2\hat{i}-10\hat{j}\]are parallel to each other.
Hence the correct answer is option D.
Note:
Any quantity that has both direction and magnitude is called a vector quantity. If the quantity has only magnitude and no direction, then it is a scalar quantity.
Here we find the cross product to see if the vectors are parallel to each other. We can find the same by checking if we can write one of the vectors as a product of the other vector, i.e. in the forth case we have the vectors \[\vec{A}=\hat{i}-5\hat{j}\text{ and }\vec{B}=2\hat{i}-10\hat{j}\]
Here we can write the B vector as,
\[\vec{B}=2\left( \hat{i}-5\hat{j} \right)\], i.e. B vector is a multiple of vector A. Therefore they are parallel to each other.
Formula used:
\[\vec{A}\times \vec{B}=\left| A \right|\left| B \right|\sin \theta \]
Complete answer:
In the question we are given four pairs of vectors and we are asked to find which of them are parallel.
We know that when two vectors are parallel to each other their cross product will be zero, i.e. if we have two vectors ‘$\vec{A}$’ and ‘$\vec{B}$’, when they are parallel to each other the angle ‘$\text{ }\!\!\theta\!\!\text{ }$’ between them will be zero, thus we will get,
$\vec{A}\times \vec{B}=\left| A \right|\left| B \right|\sin 0$
Since $\sin 0=0$,
$\Rightarrow \vec{A}\times \vec{B}=\left| A \right|\left| B \right|\times 0$
$\Rightarrow \vec{A}\times \vec{B}=0$
Let us consider the first case given in the question.
The two vectors given are,
\[\vec{A}=\hat{i}-2\hat{j}\text{ and }\vec{B}=\hat{i}-5\hat{j}\]
By taking the cross product of this we will get,
$\vec{A}\times \vec{B}=\left( \hat{i}-2\hat{j} \right)\times \left( \hat{i}-5\hat{j} \right)$
\[\Rightarrow \vec{A}\times \vec{B}=\left| \begin{matrix}
i & j & k \\
1 & -2 & 0 \\
1 & -5 & 0 \\
\end{matrix} \right|\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{i}\left( \left( -2\times 0 \right)-\left( 0\times 5 \right) \right)-\hat{j}\left( \left( 1\times 0 \right)-\left( 1\times 0 \right) \right)+\hat{k}\left( \left( 1\times -5 \right)-\left( -2\times 1 \right) \right)\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{i}\left( 0 \right)-\hat{j}\left( 0 \right)+\hat{k}\left( -5+2 \right)\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{k}\left( -3 \right)\]
$\therefore \vec{A}\times \vec{B}=-3\hat{k}$
Therefore we can see that the cross product here is not zero.
Hence we can say that \[\vec{A}=\hat{i}-2\hat{j}\text{ and }\vec{B}=\hat{i}-5\hat{j}\] are not parallel.
Now let us consider the second case.
The vectors given are,
\[\vec{A}=\hat{i}-10\hat{j}\text{ and }\vec{B}=2\hat{i}-5\hat{j}\]
By taking cross product, we will get
$\vec{A}\times \vec{B}=\left( \hat{i}-10\hat{j} \right)\times \left( 2\hat{i}-5\hat{j} \right)$
\[\Rightarrow \vec{A}\times \vec{B}=\left| \begin{matrix}
i & j & k \\
1 & -10 & 0 \\
2 & -5 & 0 \\
\end{matrix} \right|\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{i}\left( \left( -10\times 0 \right)-\left( 0\times 5 \right) \right)-\hat{j}\left( \left( 1\times 0 \right)-\left( 0\times 2 \right) \right)+\hat{k}\left( \left( 1\times -5 \right)-\left( 2\times -10 \right) \right)\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{i}\left( 0 \right)-\hat{j}\left( 0 \right)+\hat{k}\left( -5-\left( -20 \right) \right)\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{k}\left( -5+20 \right)\]
$\therefore \vec{A}\times \vec{B}=15\hat{k}$
Here also we can see that the cross product is not zero.
Therefore we can say that \[\vec{A}=\hat{i}-10\hat{j}\text{ and }\vec{B}=2\hat{i}-5\hat{j}\]are also not parallel.
In the third case the two vectors given are,
\[\vec{A}=\hat{i}-5\hat{j}\text{ and }\vec{B}=\hat{i}-10\hat{j}\]
By taking the cross product of these two vectors, we will get
$\vec{A}\times \vec{B}=\left( \hat{i}-5\hat{j} \right)\times \left( \hat{i}-10\hat{j} \right)$
\[\Rightarrow \vec{A}\times \vec{B}=\left| \begin{matrix}
i & j & k \\
1 & -5 & 0 \\
1 & -10 & 0 \\
\end{matrix} \right|\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{i}\left( \left( -5\times 0 \right)-\left( 0\times -10 \right) \right)-\hat{j}\left( \left( 1\times 0 \right)-\left( 0\times 1 \right) \right)+\hat{k}\left( \left( 1\times -10 \right)-\left( -5\times 1 \right) \right)\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{i}\left( 0 \right)-\hat{j}\left( 0 \right)+\hat{k}\left( -10-\left( -5 \right) \right)\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{k}\left( -10+5 \right)\]
$\therefore \vec{A}\times \vec{B}=-5\hat{k}$
Therefore the cross product of the two vectors \[\vec{A}=\hat{i}-5\hat{j}\text{ and }\vec{B}=\hat{i}-10\hat{j}\] is also not equal to zero. Hence they are also not parallel.
In the fourth case we are given the two vectors as \[\vec{A}=\hat{i}-5\hat{j}\text{ and }\vec{B}=2\hat{i}-10\hat{j}\].
By taking its cross product we will get,
$\vec{A}\times \vec{B}=\left( \hat{i}-5\hat{j} \right)\times \left( 2\hat{i}-10\hat{j} \right)$
\[\Rightarrow \vec{A}\times \vec{B}=\left| \begin{matrix}
i & j & k \\
1 & -5 & 0 \\
2 & -10 & 0 \\
\end{matrix} \right|\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{i}\left( \left( -5\times 0 \right)-\left( 0\times -10 \right) \right)-\hat{j}\left( \left( 1\times 0 \right)-\left( 0\times 2 \right) \right)+\hat{k}\left( \left( 1\times -10 \right)-\left( -5\times 2 \right) \right)\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{i}\left( 0 \right)-\hat{j}\left( 0 \right)+\hat{k}\left( -10-\left( -10 \right) \right)\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{k}\left( -10+10 \right)\]
\[\Rightarrow \vec{A}\times \vec{B}=\hat{k}\left( 0 \right)\]
$\therefore \vec{A}\times \vec{B}=0$
Therefore we can see that the cross product of \[\vec{A}=\hat{i}-5\hat{j}\text{ and }\vec{B}=2\hat{i}-10\hat{j}\] is zero.
We know that when the cross product of two vectors is zero, then those vectors are parallel to each other.
Therefore we can say that \[\vec{A}=\hat{i}-5\hat{j}\text{ and }\vec{B}=2\hat{i}-10\hat{j}\]are parallel to each other.
Hence the correct answer is option D.
Note:
Any quantity that has both direction and magnitude is called a vector quantity. If the quantity has only magnitude and no direction, then it is a scalar quantity.
Here we find the cross product to see if the vectors are parallel to each other. We can find the same by checking if we can write one of the vectors as a product of the other vector, i.e. in the forth case we have the vectors \[\vec{A}=\hat{i}-5\hat{j}\text{ and }\vec{B}=2\hat{i}-10\hat{j}\]
Here we can write the B vector as,
\[\vec{B}=2\left( \hat{i}-5\hat{j} \right)\], i.e. B vector is a multiple of vector A. Therefore they are parallel to each other.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

