
Which of the following pairs are isostructural ?
(A) $SO_4^{2 - }$ and $BF_4^ - $
(B) $N{H_3}$ and $NH_4^ + $
(C) $CO_3^{2 - }$ and $C{O_2}$
(D) $C{H_4}$ and $B{F_3}$
Answer
556.5k+ views
Hint: Isostructural species are those which have the same shape and hybridization.
Number of election pair $ = \dfrac{1}{2}\left[ {N + V - C + A} \right]$
Where
$V = $ Number of valence electron present in central atom
$N = $ Number of non-monovalent atoms bonded to covalent atom
$C = $ Charge of cation
$A = $ Charge of anion
Hybridisation can be calculated by using this formula then we will be able to find the structure from hybridisation.
Complete step by step answer:
The given molecules are –
(A) $SO_4^{2 - }$ and $BF_4^ - $
Number of electron pair in $SO_4^{2 - } = \dfrac{1}{2} \times \left[ {6 + 0 + 2} \right] = 4$
Number of electron pairs are 4 that means the hybridisation will be $s{p^3}$ and the geometry of the molecule will be tetrahedral.
Number of electron pair in $BF_4^ - = \dfrac{1}{2} \times \left[ {3 + 4 + 1} \right] = 4$
Number of electron pair are 4 that means the hybridisation will be $s{p^3}$ and the geometry of molecule will be tetrahedral
Structures
$SO_4^{2 - }$ molecule
(Tetrahedral structure)
$BF_4^ - $ molecule
(Tetrahedral structure)
(B) $N{H_3}$ and $NH_4^ + $
Number of electron pair in $N{H_3} = \dfrac{1}{2} \times \left[ {5 + 3 + 0} \right] = 4$
Number of electron pairs are 4 that means the hybridisation will be $s{p^3}$ and geometry will be tetrahedral. But, In $N{H_3}$ Nitrogen is surrounded by 3 atoms and the fourth position will be occupied by lone pairs of electrons.
Hence, the structure of $N{H_3}$ will be pyramidal.
Number of electron pair in $NH_4^ + = \dfrac{1}{2}\left[ {5 + 4 - 1} \right] = 4$
Number of electron pairs are 4 that means the hybridisation will be $s{p^3}$ and the geometry will be tetrahedral.
Structures
$N{H_3}$ molecule $NH_4^ + $ molecule
[Pyramidal structure] [Tetrahedral molecule]
(C) $CO_3^{2 - }$ and $C{O_2}$
Number of electron pair in $CO_3^{2 - } = \dfrac{1}{2}\left[ {4 + 0 + 2} \right] = 3$
The number of electron pairs are 3 that means the hybridisation will be $s{p^2}$ and the geometry will be trigonal planar.
Number of electron pair in $C{O_2} = \dfrac{1}{2}\left[ {4 + 0 + 0} \right] = 2$
Number of electron pairs are 2 that means the hybridisation will be sp and the geometry will be linear.
$CO_3^{2 - }$ molecule $C{O_2}$ molecule
(Trigonal planar structure) (Linear structure)
(D) $C{H_4}$ and $B{F_3}$
Number of electron pair in $C{H_4} = \dfrac{1}{2}\left[ {4 + 4 + 0} \right] = 4$
Number of electron pair are 4 that means the hybridisation will be $s{p^3}$ and the geometry will be tetrahedral
Number of electron pair in $B{F_3} = \dfrac{1}{2}\left[ {3 + 3 + 0} \right] = 3$
Number of electron pairs are 3 that means the hybridisation will be $s{p^3}$ and geometry will be trigonal planar.
Structures
$C{H_4}$ molecule $B{F_3}$ molecule
(Tetrahedral structure) (Trigonal planar)
From this, we conclude that $SO_4^{2 - }$ and $BF_4^ - $ have the same structure.
Hence, the correct answer is (A) $SO_4^{2 - }$ and $BF_4^ - $
Note: Geometry of a molecule is the arrangement of lone pair and bond pair while shape is the molecular structure excluding lone pairs of central atoms.
Number of election pair $ = \dfrac{1}{2}\left[ {N + V - C + A} \right]$
Where
$V = $ Number of valence electron present in central atom
$N = $ Number of non-monovalent atoms bonded to covalent atom
$C = $ Charge of cation
$A = $ Charge of anion
Hybridisation can be calculated by using this formula then we will be able to find the structure from hybridisation.
Complete step by step answer:
The given molecules are –
(A) $SO_4^{2 - }$ and $BF_4^ - $
Number of electron pair in $SO_4^{2 - } = \dfrac{1}{2} \times \left[ {6 + 0 + 2} \right] = 4$
Number of electron pairs are 4 that means the hybridisation will be $s{p^3}$ and the geometry of the molecule will be tetrahedral.
Number of electron pair in $BF_4^ - = \dfrac{1}{2} \times \left[ {3 + 4 + 1} \right] = 4$
Number of electron pair are 4 that means the hybridisation will be $s{p^3}$ and the geometry of molecule will be tetrahedral
Structures
$SO_4^{2 - }$ molecule
(Tetrahedral structure)
$BF_4^ - $ molecule
(Tetrahedral structure)
(B) $N{H_3}$ and $NH_4^ + $
Number of electron pair in $N{H_3} = \dfrac{1}{2} \times \left[ {5 + 3 + 0} \right] = 4$
Number of electron pairs are 4 that means the hybridisation will be $s{p^3}$ and geometry will be tetrahedral. But, In $N{H_3}$ Nitrogen is surrounded by 3 atoms and the fourth position will be occupied by lone pairs of electrons.
Hence, the structure of $N{H_3}$ will be pyramidal.
Number of electron pair in $NH_4^ + = \dfrac{1}{2}\left[ {5 + 4 - 1} \right] = 4$
Number of electron pairs are 4 that means the hybridisation will be $s{p^3}$ and the geometry will be tetrahedral.
Structures
$N{H_3}$ molecule $NH_4^ + $ molecule
[Pyramidal structure] [Tetrahedral molecule]
(C) $CO_3^{2 - }$ and $C{O_2}$
Number of electron pair in $CO_3^{2 - } = \dfrac{1}{2}\left[ {4 + 0 + 2} \right] = 3$
The number of electron pairs are 3 that means the hybridisation will be $s{p^2}$ and the geometry will be trigonal planar.
Number of electron pair in $C{O_2} = \dfrac{1}{2}\left[ {4 + 0 + 0} \right] = 2$
Number of electron pairs are 2 that means the hybridisation will be sp and the geometry will be linear.
$CO_3^{2 - }$ molecule $C{O_2}$ molecule
(Trigonal planar structure) (Linear structure)
(D) $C{H_4}$ and $B{F_3}$
Number of electron pair in $C{H_4} = \dfrac{1}{2}\left[ {4 + 4 + 0} \right] = 4$
Number of electron pair are 4 that means the hybridisation will be $s{p^3}$ and the geometry will be tetrahedral
Number of electron pair in $B{F_3} = \dfrac{1}{2}\left[ {3 + 3 + 0} \right] = 3$
Number of electron pairs are 3 that means the hybridisation will be $s{p^3}$ and geometry will be trigonal planar.
Structures
$C{H_4}$ molecule $B{F_3}$ molecule
(Tetrahedral structure) (Trigonal planar)
From this, we conclude that $SO_4^{2 - }$ and $BF_4^ - $ have the same structure.
Hence, the correct answer is (A) $SO_4^{2 - }$ and $BF_4^ - $
Note: Geometry of a molecule is the arrangement of lone pair and bond pair while shape is the molecular structure excluding lone pairs of central atoms.
| S.No. | Molecules | Hybridization | Geometry | Molecular Structure |
| 1 | $C{H_4}$ | $s{p^3}$ | Tetrahedral | Tetrahedral |
| 2 | $N{H_3}$ | $s{p^3}$ | Tetrahedral | Pyramidal |
| 3 | ${H_2}O$ | $s{p^3}$ | Tetrahedral | V-shape or Angular |
| 4 | $B{F_3}$ | $s{p^2}$ | Trigonal planar | Trigonal planar |
| 5 | $Be{H_2}$ | sp | Linear | Linear |
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

