
Which of the following pairs are isodiaphers?
A.$_{{\text{29}}}{\text{C}}{{\text{u}}^{{\text{65}}}}$ and $_{{\text{24}}}{\text{C}}{{\text{r}}^{{\text{55}}}}$
B.$_{{\text{29}}}{\text{C}}{{\text{u}}^{{\text{65}}}}$ and $_{{\text{24}}}{\text{C}}{{\text{r}}^{{\text{52}}}}$
C.$_{{\text{92}}}{{\text{U}}^{{\text{238}}}}$ and $_{{\text{90}}}{\text{T}}{{\text{h}}^{{\text{231}}}}$
D.$_{{\text{92}}}{{\text{U}}^{{\text{235}}}}$ and $_{{\text{90}}}{\text{T}}{{\text{h}}^{{\text{232}}}}$
Answer
570.6k+ views
Hint: The nuclides have different atomic numbers and different mass numbers but the same number of excess neutrons are known as isodiaphers. The number of excess neutrons is the difference between the number of neutrons and the number of protons in the nucleus.
Complete step by step answer:
Isodiaphers are formed by the $\alpha $-emission, where $\alpha $ is $_{\text{2}}{\text{H}}{{\text{e}}^{\text{4}}}$.
The given element is $_{{\text{29}}}{\text{C}}{{\text{u}}^{{\text{65}}}}$. The reaction when $_{\text{2}}{\text{H}}{{\text{e}}^{\text{4}}}$ is removed from $_{{\text{29}}}{\text{C}}{{\text{u}}^{{\text{65}}}}$ is,
$_{{\text{29}}}{\text{C}}{{\text{u}}^{{\text{65}}}}{ - _{\text{2}}}{\text{H}}{{\text{e}}^{\text{4}}}{ \to _{{\text{27}}}}{\text{C}}{{\text{o}}^{{\text{61}}}}$
Thus, the isodiaphere of $_{{\text{29}}}{\text{C}}{{\text{u}}^{{\text{65}}}}$ is $_{{\text{27}}}{\text{C}}{{\text{o}}^{{\text{61}}}}$ and not $_{{\text{24}}}{\text{C}}{{\text{r}}^{{\text{55}}}}$.
Thus, option (A) is not correct.
The given element is $_{{\text{29}}}{\text{C}}{{\text{u}}^{{\text{65}}}}$. The reaction when $_{\text{2}}{\text{H}}{{\text{e}}^{\text{4}}}$ is removed from $_{{\text{29}}}{\text{C}}{{\text{u}}^{{\text{65}}}}$ is,
$_{{\text{29}}}{\text{C}}{{\text{u}}^{{\text{65}}}}{ - _{\text{2}}}{\text{H}}{{\text{e}}^{\text{4}}}{ \to _{{\text{27}}}}{\text{C}}{{\text{o}}^{{\text{61}}}}$
Thus, the isodiaphere of $_{{\text{29}}}{\text{C}}{{\text{u}}^{{\text{65}}}}$ is $_{{\text{27}}}{\text{C}}{{\text{o}}^{{\text{61}}}}$ and not $_{{\text{24}}}{\text{C}}{{\text{r}}^{{\text{52}}}}$.
Thus, option (B) is not correct.
The given element is $_{{\text{92}}}{{\text{U}}^{{\text{238}}}}$. The reaction when $_{\text{2}}{\text{H}}{{\text{e}}^{\text{4}}}$ is removed from $_{{\text{92}}}{{\text{U}}^{{\text{238}}}}$ is,
$_{{\text{92}}}{{\text{U}}^{{\text{238}}}}{ - _{\text{2}}}{\text{H}}{{\text{e}}^{\text{4}}}{ \to _{{\text{90}}}}{\text{T}}{{\text{h}}^{{\text{231}}}}$
Thus, the isodiaphere of $_{{\text{92}}}{{\text{U}}^{{\text{238}}}}$ is $_{{\text{90}}}{\text{T}}{{\text{h}}^{{\text{231}}}}$.
Thus, option (C) is correct.
The given element is $_{{\text{92}}}{{\text{U}}^{{\text{238}}}}$. The reaction when $_{\text{2}}{\text{H}}{{\text{e}}^{\text{4}}}$ is removed from $_{{\text{92}}}{{\text{U}}^{{\text{238}}}}$ is,
$_{{\text{92}}}{{\text{U}}^{{\text{238}}}}{ - _{\text{2}}}{\text{H}}{{\text{e}}^{\text{4}}}{ \to _{{\text{90}}}}{\text{T}}{{\text{h}}^{{\text{231}}}}$
Thus, the isodiaphere of $_{{\text{92}}}{{\text{U}}^{{\text{238}}}}$ is $_{{\text{90}}}{\text{T}}{{\text{h}}^{{\text{231}}}}$ and not $_{{\text{90}}}{\text{T}}{{\text{h}}^{{\text{232}}}}$.
Thus, option (D) is incorrect.
Thus, the pair of isodiaphers is $_{{\text{92}}}{{\text{U}}^{{\text{238}}}}$ and $_{{\text{90}}}{\text{T}}{{\text{h}}^{{\text{231}}}}$.
Therefore, option C is the correct choice.
Note:
The general representation of elements is $_{\text{Z}}{{\text{X}}^{\text{A}}}$. Where ${\text{Z}}$ is the atomic number of the element, ${\text{A}}$ is the mass number of the element and ${\text{X}}$ is the atomic symbol of the element.
The number of protons in the nucleus of the atom or the number of electrons surrounding the nucleus of the atom of any element is known as the atomic number of the element.
The sum of the number of protons and the number of neutrons in the nucleus of an atom of an element is known as the mass number of the element.
Complete step by step answer:
Isodiaphers are formed by the $\alpha $-emission, where $\alpha $ is $_{\text{2}}{\text{H}}{{\text{e}}^{\text{4}}}$.
The given element is $_{{\text{29}}}{\text{C}}{{\text{u}}^{{\text{65}}}}$. The reaction when $_{\text{2}}{\text{H}}{{\text{e}}^{\text{4}}}$ is removed from $_{{\text{29}}}{\text{C}}{{\text{u}}^{{\text{65}}}}$ is,
$_{{\text{29}}}{\text{C}}{{\text{u}}^{{\text{65}}}}{ - _{\text{2}}}{\text{H}}{{\text{e}}^{\text{4}}}{ \to _{{\text{27}}}}{\text{C}}{{\text{o}}^{{\text{61}}}}$
Thus, the isodiaphere of $_{{\text{29}}}{\text{C}}{{\text{u}}^{{\text{65}}}}$ is $_{{\text{27}}}{\text{C}}{{\text{o}}^{{\text{61}}}}$ and not $_{{\text{24}}}{\text{C}}{{\text{r}}^{{\text{55}}}}$.
Thus, option (A) is not correct.
The given element is $_{{\text{29}}}{\text{C}}{{\text{u}}^{{\text{65}}}}$. The reaction when $_{\text{2}}{\text{H}}{{\text{e}}^{\text{4}}}$ is removed from $_{{\text{29}}}{\text{C}}{{\text{u}}^{{\text{65}}}}$ is,
$_{{\text{29}}}{\text{C}}{{\text{u}}^{{\text{65}}}}{ - _{\text{2}}}{\text{H}}{{\text{e}}^{\text{4}}}{ \to _{{\text{27}}}}{\text{C}}{{\text{o}}^{{\text{61}}}}$
Thus, the isodiaphere of $_{{\text{29}}}{\text{C}}{{\text{u}}^{{\text{65}}}}$ is $_{{\text{27}}}{\text{C}}{{\text{o}}^{{\text{61}}}}$ and not $_{{\text{24}}}{\text{C}}{{\text{r}}^{{\text{52}}}}$.
Thus, option (B) is not correct.
The given element is $_{{\text{92}}}{{\text{U}}^{{\text{238}}}}$. The reaction when $_{\text{2}}{\text{H}}{{\text{e}}^{\text{4}}}$ is removed from $_{{\text{92}}}{{\text{U}}^{{\text{238}}}}$ is,
$_{{\text{92}}}{{\text{U}}^{{\text{238}}}}{ - _{\text{2}}}{\text{H}}{{\text{e}}^{\text{4}}}{ \to _{{\text{90}}}}{\text{T}}{{\text{h}}^{{\text{231}}}}$
Thus, the isodiaphere of $_{{\text{92}}}{{\text{U}}^{{\text{238}}}}$ is $_{{\text{90}}}{\text{T}}{{\text{h}}^{{\text{231}}}}$.
Thus, option (C) is correct.
The given element is $_{{\text{92}}}{{\text{U}}^{{\text{238}}}}$. The reaction when $_{\text{2}}{\text{H}}{{\text{e}}^{\text{4}}}$ is removed from $_{{\text{92}}}{{\text{U}}^{{\text{238}}}}$ is,
$_{{\text{92}}}{{\text{U}}^{{\text{238}}}}{ - _{\text{2}}}{\text{H}}{{\text{e}}^{\text{4}}}{ \to _{{\text{90}}}}{\text{T}}{{\text{h}}^{{\text{231}}}}$
Thus, the isodiaphere of $_{{\text{92}}}{{\text{U}}^{{\text{238}}}}$ is $_{{\text{90}}}{\text{T}}{{\text{h}}^{{\text{231}}}}$ and not $_{{\text{90}}}{\text{T}}{{\text{h}}^{{\text{232}}}}$.
Thus, option (D) is incorrect.
Thus, the pair of isodiaphers is $_{{\text{92}}}{{\text{U}}^{{\text{238}}}}$ and $_{{\text{90}}}{\text{T}}{{\text{h}}^{{\text{231}}}}$.
Therefore, option C is the correct choice.
Note:
The general representation of elements is $_{\text{Z}}{{\text{X}}^{\text{A}}}$. Where ${\text{Z}}$ is the atomic number of the element, ${\text{A}}$ is the mass number of the element and ${\text{X}}$ is the atomic symbol of the element.
The number of protons in the nucleus of the atom or the number of electrons surrounding the nucleus of the atom of any element is known as the atomic number of the element.
The sum of the number of protons and the number of neutrons in the nucleus of an atom of an element is known as the mass number of the element.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

State the principle of an ac generator and explain class 12 physics CBSE

