
Which of the following is/are true about the ellipse ${x^2} + 4{y^2} - 2x - 16y + 13 = 0$?
(A) The latus rectum of the ellipse is $1$.
(B) Distance between foci of the ellipse is $4\sqrt 3 $.
(C) Sum of the focal distance of a point P (x, y) on the ellipse is $4$.
(D) $y = 3$ meets the tangents drawn at the vertices of the ellipse at point P and Q, then PQ subtends a right angle at any of its foci.
Answer
466.5k+ views
Hint: First we will convert the above equation in the standard form of ellipse so that we can find the value of a and b from the equation. Next, we need to find the eccentricity of this ellipse which is required in finding the latus rectum using the formula $e = \sqrt {1 - \dfrac{{{b^2}}}{{{a^2}}}} $.
Complete answer:
In the above question, first we will convert the equation ${x^2} + 4{y^2} - 2x - 16y + 13 = 0$ in the standard equation of an ellipse, which is $\dfrac{{{{\left( {x - {x_1}} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - {y_1}} \right)}^2}}}{{{b^2}}} = 0$.
Therefore,
${x^2} + 4{y^2} - 2x - 16y + 13 = 0$
We can also write the above equation as,
$ \Rightarrow {x^2} - 2x + 1 + 4{y^2} - 16y + 16 - 4 = 0$
Now, taking $4$ as common
$ \Rightarrow \left( {{x^2} - 2x + 1} \right) + 4\left( {{y^2} - 4y + 4} \right) - 4 = 0$
On transposing, we get
$ \Rightarrow \left( {{x^2} - 2x + 1} \right) + 4\left( {{y^2} - 4y + 4} \right) = 4$
Now we will use the formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$in the above equation
$ \Rightarrow {\left( {x - 1} \right)^2} + 4{\left( {y - 2} \right)^2} = 4$
Now, we will divide the whole equation by $4$.
$ \Rightarrow \dfrac{{{{\left( {x - 1} \right)}^2}}}{4} + \dfrac{{{{\left( {y - 2} \right)}^2}}}{1} = 1$
$ \Rightarrow \dfrac{{{{\left( {x - 1} \right)}^2}}}{{{{\left( 2 \right)}^2}}} + \dfrac{{{{\left( {y - 2} \right)}^2}}}{{{{\left( 1 \right)}^2}}} = 1$
On comparing with $\dfrac{{{{\left( {x - {x_1}} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - {y_1}} \right)}^2}}}{{{b^2}}} = 0$, we get $a = 2\,\,and\,\,b = 1$
Now,
(A) The length of latus rectum $ = \dfrac{{2{b^2}}}{a}$
On substituting the values of a and b
$ \Rightarrow \dfrac{{2 \times {{\left( 1 \right)}^2}}}{2}$
$ \Rightarrow 1$
(B) $e = \sqrt {1 - \dfrac{{{b^2}}}{{{a^2}}}} $
$e = \sqrt {1 - \dfrac{1}{4}} $
$ \Rightarrow e = \sqrt {\dfrac{3}{4}} = \dfrac{{\sqrt 3 }}{2}$
Distance between foci of the ellipse $ = 2ae = 2 \times 2 \times \dfrac{{\sqrt 3 }}{2} = 2\sqrt 3 $
(C) Sum of the focal distance $ = 2a = 2 \times 2 = 4$
(D) In this part we have to prove that if$y = 3$ meets the tangents drawn at the vertices of the ellipse at point P and Q, then PQ subtends a right angle at any of its foci. Here O denotes the focus of given ellipse.
Now we use the relation ${m_1}{m_2} = - 1$to prove that line OP and OQ subtend right angle at its focus. Here ${m_1}$is the slope of OP and ${m_2}$ is the slope of OQ.
Here, in this figure ${x_1} = 1 + \sqrt 3 \,,\,{y_1} = 2\,\,,\,{x_2} = - 1,\,\,{y_2} = 3\,,\,{x_3} = 3\,,\,{y_3} = 3\,\,$
$ \Rightarrow $${m_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$ and ${m_2} = \dfrac{{{y_3} - {y_1}}}{{{x_3} - {x_1}}}$
$ \Rightarrow $${m_1} = \dfrac{{3 - 2}}{{ - 1 - \left( {1 + \sqrt 3 } \right)}}$ and ${m_2} = \dfrac{{3 - 2}}{{3 - \left( {1 + \sqrt 3 } \right)}}$
$ \Rightarrow $${m_1} = \dfrac{1}{{ - 2 - \sqrt 3 }}$ and ${m_2} = \dfrac{1}{{2 - \sqrt 3 }}$
$ \Rightarrow $${m_1} = \dfrac{1}{{ - \left( {2 + \sqrt 3 } \right)}}$and ${m_2} = \dfrac{1}{{2 - \sqrt 3 }}$
Now, we will multiply both the terms
${m_1}{m_2} = \dfrac{1}{{2 - \sqrt 3 }} \times \dfrac{{ - 1}}{{\left( {2 + \sqrt 3 } \right)}}$
\[ \Rightarrow {m_1}{m_2} = \dfrac{{ - 1}}{{{{\left( 2 \right)}^2} - {{\left( {\sqrt 3 } \right)}^2}}}\]
\[ \Rightarrow {m_1}{m_2} = \dfrac{{ - 1}}{{4 - 3}}\]
\[ \Rightarrow {m_1}{m_2} = \dfrac{{ - 1}}{1}\]
\[ \Rightarrow {m_1}{m_2} = - 1\]
Therefore, OP and OQ subtend the right angle at the focus.
Hence, option A, C and D are correct.
Therefore, the correct option is A, C and D
Note: All ellipses have two focal points, or foci. The sum of the distances from every point on the ellipse to the two foci is a constant. All ellipses have a centre and a major and minor axis. All ellipses have eccentricity values greater than or equal to zero, and less than one.
Complete answer:
In the above question, first we will convert the equation ${x^2} + 4{y^2} - 2x - 16y + 13 = 0$ in the standard equation of an ellipse, which is $\dfrac{{{{\left( {x - {x_1}} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - {y_1}} \right)}^2}}}{{{b^2}}} = 0$.
Therefore,
${x^2} + 4{y^2} - 2x - 16y + 13 = 0$
We can also write the above equation as,
$ \Rightarrow {x^2} - 2x + 1 + 4{y^2} - 16y + 16 - 4 = 0$
Now, taking $4$ as common
$ \Rightarrow \left( {{x^2} - 2x + 1} \right) + 4\left( {{y^2} - 4y + 4} \right) - 4 = 0$
On transposing, we get
$ \Rightarrow \left( {{x^2} - 2x + 1} \right) + 4\left( {{y^2} - 4y + 4} \right) = 4$
Now we will use the formula ${\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab$in the above equation
$ \Rightarrow {\left( {x - 1} \right)^2} + 4{\left( {y - 2} \right)^2} = 4$
Now, we will divide the whole equation by $4$.
$ \Rightarrow \dfrac{{{{\left( {x - 1} \right)}^2}}}{4} + \dfrac{{{{\left( {y - 2} \right)}^2}}}{1} = 1$
$ \Rightarrow \dfrac{{{{\left( {x - 1} \right)}^2}}}{{{{\left( 2 \right)}^2}}} + \dfrac{{{{\left( {y - 2} \right)}^2}}}{{{{\left( 1 \right)}^2}}} = 1$
On comparing with $\dfrac{{{{\left( {x - {x_1}} \right)}^2}}}{{{a^2}}} + \dfrac{{{{\left( {y - {y_1}} \right)}^2}}}{{{b^2}}} = 0$, we get $a = 2\,\,and\,\,b = 1$
Now,
(A) The length of latus rectum $ = \dfrac{{2{b^2}}}{a}$
On substituting the values of a and b
$ \Rightarrow \dfrac{{2 \times {{\left( 1 \right)}^2}}}{2}$
$ \Rightarrow 1$
(B) $e = \sqrt {1 - \dfrac{{{b^2}}}{{{a^2}}}} $
$e = \sqrt {1 - \dfrac{1}{4}} $
$ \Rightarrow e = \sqrt {\dfrac{3}{4}} = \dfrac{{\sqrt 3 }}{2}$
Distance between foci of the ellipse $ = 2ae = 2 \times 2 \times \dfrac{{\sqrt 3 }}{2} = 2\sqrt 3 $
(C) Sum of the focal distance $ = 2a = 2 \times 2 = 4$
(D) In this part we have to prove that if$y = 3$ meets the tangents drawn at the vertices of the ellipse at point P and Q, then PQ subtends a right angle at any of its foci. Here O denotes the focus of given ellipse.
Now we use the relation ${m_1}{m_2} = - 1$to prove that line OP and OQ subtend right angle at its focus. Here ${m_1}$is the slope of OP and ${m_2}$ is the slope of OQ.
Here, in this figure ${x_1} = 1 + \sqrt 3 \,,\,{y_1} = 2\,\,,\,{x_2} = - 1,\,\,{y_2} = 3\,,\,{x_3} = 3\,,\,{y_3} = 3\,\,$
$ \Rightarrow $${m_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}$ and ${m_2} = \dfrac{{{y_3} - {y_1}}}{{{x_3} - {x_1}}}$
$ \Rightarrow $${m_1} = \dfrac{{3 - 2}}{{ - 1 - \left( {1 + \sqrt 3 } \right)}}$ and ${m_2} = \dfrac{{3 - 2}}{{3 - \left( {1 + \sqrt 3 } \right)}}$
$ \Rightarrow $${m_1} = \dfrac{1}{{ - 2 - \sqrt 3 }}$ and ${m_2} = \dfrac{1}{{2 - \sqrt 3 }}$
$ \Rightarrow $${m_1} = \dfrac{1}{{ - \left( {2 + \sqrt 3 } \right)}}$and ${m_2} = \dfrac{1}{{2 - \sqrt 3 }}$
Now, we will multiply both the terms
${m_1}{m_2} = \dfrac{1}{{2 - \sqrt 3 }} \times \dfrac{{ - 1}}{{\left( {2 + \sqrt 3 } \right)}}$
\[ \Rightarrow {m_1}{m_2} = \dfrac{{ - 1}}{{{{\left( 2 \right)}^2} - {{\left( {\sqrt 3 } \right)}^2}}}\]
\[ \Rightarrow {m_1}{m_2} = \dfrac{{ - 1}}{{4 - 3}}\]
\[ \Rightarrow {m_1}{m_2} = \dfrac{{ - 1}}{1}\]
\[ \Rightarrow {m_1}{m_2} = - 1\]
Therefore, OP and OQ subtend the right angle at the focus.
Hence, option A, C and D are correct.
Therefore, the correct option is A, C and D
Note: All ellipses have two focal points, or foci. The sum of the distances from every point on the ellipse to the two foci is a constant. All ellipses have a centre and a major and minor axis. All ellipses have eccentricity values greater than or equal to zero, and less than one.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

