
Which of the following is the solution of set of the equation \[2\cos^{- 1}(x) = \text{cot}^{- 1}\left( \dfrac{2x^{2} – 1}{2x\sqrt{1 – x^{2}}} \right)\ \] ?
A. \[(0,\ 1)\]
B. \[( - 1,\ 1) - \{ 0\}\]
C. \[( - 1,\ 0)\]
D. \[\lbrack – 1,\ 1\rbrack\]
Answer
483.6k+ views
Hint:In this question, we need to find out the solution set of the values of \[x\]. First, let us substitute \[\cos\ \theta\] in the place of \[x\]. Then we can solve it by considering the left and right part of the given expression separately . To solve the expression we have to use trigonometric formulas and identity. Then we have to equate both the left and right part of the expression. Using this we can easily find out the interval of \[x\].
Complete step by step answer:
Given, \[2\cos^{- 1}(x) = \cot^{- 1}\left( \dfrac{2x^{2} – 1}{2x\sqrt{1 – x^{2}}} \right)\ \]
Here we need to find out the interval of \[x\]. Let us substitute,
\[x = \cos\ \theta\]
\[\Rightarrow \ x \in \lbrack – 1,\ 1\rbrack\]
Since we know that the range of cosine function is \[\lbrack – 1,\ 1\rbrack\]
On substituting \[x = \cos\ \theta\]
We get,
\[\Rightarrow \ 2\cos^{- 1}\left( \cos\ \theta \right) = \cot^{- 1}\left( \dfrac{2\left( \cos\ \theta \right)^{2} – 1}{2\left( \cos\ \theta \right)\sqrt{1 - \left( \cos\ \theta \right)^{2}}} \right)\]
First let us consider the left part of the expression.
\[\Rightarrow \ \ 2\cos^{- 1}\left( \cos\ \theta \right)\]
We know that \[\cos^{- 1}\left( \cos\ \theta \right) = \theta\]
Hence we get,
\[\Rightarrow \ 2(\theta)\]
Thus \[\theta \in \lbrack 0,\ \pi\rbrack\] •••(1)
Now let us consider the right part of the expression.
\[\Rightarrow \ \cot^{- 1}\left( \dfrac{2\left( \cos\ \theta \right)^{2} – 1}{2\left( \cos\ \theta \right)\sqrt{1 - \left( \cos\ \theta \right)^{2}}} \right)\]
We know that \[\sin\ \theta = \sqrt{1 - \left( \cos\ \theta \right)^{2}}\]
By substituting \[\sin\ \theta\] in the place of \[\sqrt{1 - \left( \cos\ \theta \right)^{2}}\] ,
We get,
\[\Rightarrow \ \text{cot}^{- 1}\left( \dfrac{2\left( \cos\ \theta \right)^{2} – 1}{2\left( \cos\ \theta \right)\sin\ \theta} \right)\]
We also know that \[2\left( \cos\ \theta \right)^{2} – 1 = \cos\ 2\theta\] ,
Thus we get,
\[\Rightarrow \ \text{cot}^{- 1}\left( \dfrac{\cos\ 2\theta}{2\left( {\cos\ \theta} \right)\sin\ \theta} \right)\]
By using the formula \[\sin\ 2\theta = 2\cos\ \theta\ \sin\ \theta\],
We get,
\[\Rightarrow \ \text{cot}^{- 1}\left( \dfrac{\cos\ 2\theta}{\sin\ 2\theta} \right)\]
We also know that cotangent is the ratio of the cosine function to the sine function.Thus we get,
\[\Rightarrow \ \text{cot}^{- 1}\left( \cot\ 2\theta \right)\]
We know that \[\text{cot}^{- 1}\left( \cot\ 2\theta \right) = 2\theta\]
By using this we get,
\[\Rightarrow \ 2\theta\]
\[\Rightarrow \ 0 < 2\theta < \pi\]
On dividing by \[2\] ,
We get,
\[0 < \theta < \dfrac{\pi}{2}\] •••(2)
Now on equating the expression (1) and (2) ,
We get
\[0 < \theta < \dfrac{\pi}{2}\]
By putting cosine function,
We get,
\[\Rightarrow \ \cos\left( 0 \right) < \cos\left( \theta \right) < \cos\left( \dfrac{\pi}{2} \right)\]
We know that \[\cos(0)\] is \[0\] and \[\cos\left( \dfrac{\pi}{2} \right)\] is \[1\]
\[\Rightarrow \ 0 < \cos\ \theta < 1\]
By substituting \[x = \cos\ \theta\] ,
We get,
\[\Rightarrow \ 0 < x < 1\]
Therefore \[x \in (0,\ 1)\]. Thus we get the solution of set of the equation \[2\cos^{- 1}\left( x \right) = \cot^{- 1}\left( \dfrac{2x^{2} – 1}{2x\sqrt{1 – x^{2}}} \right)\ \] is \[\ (0,\ 1)\]
Hence, the correct answer is option A.
Note:In order to solve these types of questions, we must have a stronger grip over the trigonometric properties . We must remember that the range of cosine function is \[\lbrack - 1,1\rbrack\].The range of the cosine function helps in getting us the required interval of \[x\] and helps us on the right track to reach our answer. We should also be careful while solving the inverse trigonometric functions.
Complete step by step answer:
Given, \[2\cos^{- 1}(x) = \cot^{- 1}\left( \dfrac{2x^{2} – 1}{2x\sqrt{1 – x^{2}}} \right)\ \]
Here we need to find out the interval of \[x\]. Let us substitute,
\[x = \cos\ \theta\]
\[\Rightarrow \ x \in \lbrack – 1,\ 1\rbrack\]
Since we know that the range of cosine function is \[\lbrack – 1,\ 1\rbrack\]
On substituting \[x = \cos\ \theta\]
We get,
\[\Rightarrow \ 2\cos^{- 1}\left( \cos\ \theta \right) = \cot^{- 1}\left( \dfrac{2\left( \cos\ \theta \right)^{2} – 1}{2\left( \cos\ \theta \right)\sqrt{1 - \left( \cos\ \theta \right)^{2}}} \right)\]
First let us consider the left part of the expression.
\[\Rightarrow \ \ 2\cos^{- 1}\left( \cos\ \theta \right)\]
We know that \[\cos^{- 1}\left( \cos\ \theta \right) = \theta\]
Hence we get,
\[\Rightarrow \ 2(\theta)\]
Thus \[\theta \in \lbrack 0,\ \pi\rbrack\] •••(1)
Now let us consider the right part of the expression.
\[\Rightarrow \ \cot^{- 1}\left( \dfrac{2\left( \cos\ \theta \right)^{2} – 1}{2\left( \cos\ \theta \right)\sqrt{1 - \left( \cos\ \theta \right)^{2}}} \right)\]
We know that \[\sin\ \theta = \sqrt{1 - \left( \cos\ \theta \right)^{2}}\]
By substituting \[\sin\ \theta\] in the place of \[\sqrt{1 - \left( \cos\ \theta \right)^{2}}\] ,
We get,
\[\Rightarrow \ \text{cot}^{- 1}\left( \dfrac{2\left( \cos\ \theta \right)^{2} – 1}{2\left( \cos\ \theta \right)\sin\ \theta} \right)\]
We also know that \[2\left( \cos\ \theta \right)^{2} – 1 = \cos\ 2\theta\] ,
Thus we get,
\[\Rightarrow \ \text{cot}^{- 1}\left( \dfrac{\cos\ 2\theta}{2\left( {\cos\ \theta} \right)\sin\ \theta} \right)\]
By using the formula \[\sin\ 2\theta = 2\cos\ \theta\ \sin\ \theta\],
We get,
\[\Rightarrow \ \text{cot}^{- 1}\left( \dfrac{\cos\ 2\theta}{\sin\ 2\theta} \right)\]
We also know that cotangent is the ratio of the cosine function to the sine function.Thus we get,
\[\Rightarrow \ \text{cot}^{- 1}\left( \cot\ 2\theta \right)\]
We know that \[\text{cot}^{- 1}\left( \cot\ 2\theta \right) = 2\theta\]
By using this we get,
\[\Rightarrow \ 2\theta\]
\[\Rightarrow \ 0 < 2\theta < \pi\]
On dividing by \[2\] ,
We get,
\[0 < \theta < \dfrac{\pi}{2}\] •••(2)
Now on equating the expression (1) and (2) ,
We get
\[0 < \theta < \dfrac{\pi}{2}\]
By putting cosine function,
We get,
\[\Rightarrow \ \cos\left( 0 \right) < \cos\left( \theta \right) < \cos\left( \dfrac{\pi}{2} \right)\]
We know that \[\cos(0)\] is \[0\] and \[\cos\left( \dfrac{\pi}{2} \right)\] is \[1\]
\[\Rightarrow \ 0 < \cos\ \theta < 1\]
By substituting \[x = \cos\ \theta\] ,
We get,
\[\Rightarrow \ 0 < x < 1\]
Therefore \[x \in (0,\ 1)\]. Thus we get the solution of set of the equation \[2\cos^{- 1}\left( x \right) = \cot^{- 1}\left( \dfrac{2x^{2} – 1}{2x\sqrt{1 – x^{2}}} \right)\ \] is \[\ (0,\ 1)\]
Hence, the correct answer is option A.
Note:In order to solve these types of questions, we must have a stronger grip over the trigonometric properties . We must remember that the range of cosine function is \[\lbrack - 1,1\rbrack\].The range of the cosine function helps in getting us the required interval of \[x\] and helps us on the right track to reach our answer. We should also be careful while solving the inverse trigonometric functions.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

