
Which of the following is NOT left inverse of matrix $\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&1 \\
2&3
\end{array}} \right]$ ?
A. $\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{\dfrac{1}{2}}&0 \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]$
B. $\left[ {\begin{array}{*{20}{c}}
2&{ - 7}&3 \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]$
C. $\left[ {\begin{array}{*{20}{c}}
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0 \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]$
D.\[\]$\left[ {\begin{array}{*{20}{c}}
0&3&{ - 1} \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]$ .
Answer
596.4k+ views
Hint :In this question, we will have the properties of the inverse of a matrix .To solve this question ,we have to check all the matrices that are given in the options that either are left inverse of the given matrix or not left inverse of that matrix.
Complete step-by-step answer:
To check whether the given matrix is left inverse or not, it must satisfy the following condition :
$ \Rightarrow LA = \left[ {{A^{ - 1}}} \right]\left[ A \right] = I$ .
Where $A$ is the given matrix and ${A^{ - 1}}$is the left inverse of the matrix $A$ and $I$ is the identity matrix.
$A = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&1 \\
2&3
\end{array}} \right]{\text{ and }}I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$ .
1. For option A.
Left inverse, $LA = \left[ {{A^{ - 1}}} \right]\left[ A \right] = I$
$
\Rightarrow LA = {\text{ }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{\dfrac{1}{2}}&0 \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&1 \\
2&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{\dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0} \\
{ - \dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{ - \dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0}
\end{array}} \right] \\
\\
\Rightarrow LA = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = I \\
$
Hence ,option A is left inverse of matrix A .
2. For option B .
$
\Rightarrow LA = {\text{ }}\left[ {\begin{array}{*{20}{c}}
2&{ - 7}&3 \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&1 \\
2&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{2 \times 1 + - 7 \times 1 + 3 \times 2}&{2 \times - 1 + - 7 \times 1 + 3 \times 3} \\
{ - \dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{ - \dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0}
\end{array}} \right] \\
\\
\Rightarrow LA = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = I \\
$
Hence, option B is left inverse of matrix A.
3. For option C .
$
\Rightarrow LA = {\text{ }}\left[ {\begin{array}{*{20}{c}}
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0 \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&1 \\
2&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - \dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{ - \dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0} \\
{ - \dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{ - \dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0}
\end{array}} \right] \\
\\
\Rightarrow LA = \left[ {\begin{array}{*{20}{c}}
0&1 \\
0&1
\end{array}} \right] \ne I \\
$
Hence , option C is not the left inverse of matrix A .
Here , we got the correct answer for the question by verifying only 3 options so we will not check the other options .
Therefore ,the correct answer is option C.
Note : In this type of question first we have to remember the properties of the inverse of a matrix. Then we will select the options one by one and apply those properties with the matrix given in the question . After that we will select the right option which is satisfying the statement and if some option gets left after we get the correct option then we will not check those options . through this we will get our result.
Complete step-by-step answer:
To check whether the given matrix is left inverse or not, it must satisfy the following condition :
$ \Rightarrow LA = \left[ {{A^{ - 1}}} \right]\left[ A \right] = I$ .
Where $A$ is the given matrix and ${A^{ - 1}}$is the left inverse of the matrix $A$ and $I$ is the identity matrix.
$A = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&1 \\
2&3
\end{array}} \right]{\text{ and }}I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$ .
1. For option A.
Left inverse, $LA = \left[ {{A^{ - 1}}} \right]\left[ A \right] = I$
$
\Rightarrow LA = {\text{ }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{\dfrac{1}{2}}&0 \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&1 \\
2&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{\dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0} \\
{ - \dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{ - \dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0}
\end{array}} \right] \\
\\
\Rightarrow LA = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = I \\
$
Hence ,option A is left inverse of matrix A .
2. For option B .
$
\Rightarrow LA = {\text{ }}\left[ {\begin{array}{*{20}{c}}
2&{ - 7}&3 \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&1 \\
2&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{2 \times 1 + - 7 \times 1 + 3 \times 2}&{2 \times - 1 + - 7 \times 1 + 3 \times 3} \\
{ - \dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{ - \dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0}
\end{array}} \right] \\
\\
\Rightarrow LA = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = I \\
$
Hence, option B is left inverse of matrix A.
3. For option C .
$
\Rightarrow LA = {\text{ }}\left[ {\begin{array}{*{20}{c}}
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0 \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&1 \\
2&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - \dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{ - \dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0} \\
{ - \dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{ - \dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0}
\end{array}} \right] \\
\\
\Rightarrow LA = \left[ {\begin{array}{*{20}{c}}
0&1 \\
0&1
\end{array}} \right] \ne I \\
$
Hence , option C is not the left inverse of matrix A .
Here , we got the correct answer for the question by verifying only 3 options so we will not check the other options .
Therefore ,the correct answer is option C.
Note : In this type of question first we have to remember the properties of the inverse of a matrix. Then we will select the options one by one and apply those properties with the matrix given in the question . After that we will select the right option which is satisfying the statement and if some option gets left after we get the correct option then we will not check those options . through this we will get our result.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

Who wrote the novel "Pride and Prejudice"?

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which type of resource is iron ore A Renewable B Biotic class 11 social science CBSE

10 examples of friction in our daily life

Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

