
Which of the following is NOT left inverse of matrix $\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&1 \\
2&3
\end{array}} \right]$ ?
A. $\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{\dfrac{1}{2}}&0 \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]$
B. $\left[ {\begin{array}{*{20}{c}}
2&{ - 7}&3 \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]$
C. $\left[ {\begin{array}{*{20}{c}}
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0 \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]$
D.\[\]$\left[ {\begin{array}{*{20}{c}}
0&3&{ - 1} \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]$ .
Answer
615.6k+ views
Hint :In this question, we will have the properties of the inverse of a matrix .To solve this question ,we have to check all the matrices that are given in the options that either are left inverse of the given matrix or not left inverse of that matrix.
Complete step-by-step answer:
To check whether the given matrix is left inverse or not, it must satisfy the following condition :
$ \Rightarrow LA = \left[ {{A^{ - 1}}} \right]\left[ A \right] = I$ .
Where $A$ is the given matrix and ${A^{ - 1}}$is the left inverse of the matrix $A$ and $I$ is the identity matrix.
$A = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&1 \\
2&3
\end{array}} \right]{\text{ and }}I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$ .
1. For option A.
Left inverse, $LA = \left[ {{A^{ - 1}}} \right]\left[ A \right] = I$
$
\Rightarrow LA = {\text{ }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{\dfrac{1}{2}}&0 \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&1 \\
2&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{\dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0} \\
{ - \dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{ - \dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0}
\end{array}} \right] \\
\\
\Rightarrow LA = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = I \\
$
Hence ,option A is left inverse of matrix A .
2. For option B .
$
\Rightarrow LA = {\text{ }}\left[ {\begin{array}{*{20}{c}}
2&{ - 7}&3 \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&1 \\
2&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{2 \times 1 + - 7 \times 1 + 3 \times 2}&{2 \times - 1 + - 7 \times 1 + 3 \times 3} \\
{ - \dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{ - \dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0}
\end{array}} \right] \\
\\
\Rightarrow LA = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = I \\
$
Hence, option B is left inverse of matrix A.
3. For option C .
$
\Rightarrow LA = {\text{ }}\left[ {\begin{array}{*{20}{c}}
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0 \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&1 \\
2&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - \dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{ - \dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0} \\
{ - \dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{ - \dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0}
\end{array}} \right] \\
\\
\Rightarrow LA = \left[ {\begin{array}{*{20}{c}}
0&1 \\
0&1
\end{array}} \right] \ne I \\
$
Hence , option C is not the left inverse of matrix A .
Here , we got the correct answer for the question by verifying only 3 options so we will not check the other options .
Therefore ,the correct answer is option C.
Note : In this type of question first we have to remember the properties of the inverse of a matrix. Then we will select the options one by one and apply those properties with the matrix given in the question . After that we will select the right option which is satisfying the statement and if some option gets left after we get the correct option then we will not check those options . through this we will get our result.
Complete step-by-step answer:
To check whether the given matrix is left inverse or not, it must satisfy the following condition :
$ \Rightarrow LA = \left[ {{A^{ - 1}}} \right]\left[ A \right] = I$ .
Where $A$ is the given matrix and ${A^{ - 1}}$is the left inverse of the matrix $A$ and $I$ is the identity matrix.
$A = \left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&1 \\
2&3
\end{array}} \right]{\text{ and }}I = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right]$ .
1. For option A.
Left inverse, $LA = \left[ {{A^{ - 1}}} \right]\left[ A \right] = I$
$
\Rightarrow LA = {\text{ }}\left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2}}&{\dfrac{1}{2}}&0 \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&1 \\
2&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{\dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0} \\
{ - \dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{ - \dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0}
\end{array}} \right] \\
\\
\Rightarrow LA = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = I \\
$
Hence ,option A is left inverse of matrix A .
2. For option B .
$
\Rightarrow LA = {\text{ }}\left[ {\begin{array}{*{20}{c}}
2&{ - 7}&3 \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&1 \\
2&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{2 \times 1 + - 7 \times 1 + 3 \times 2}&{2 \times - 1 + - 7 \times 1 + 3 \times 3} \\
{ - \dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{ - \dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0}
\end{array}} \right] \\
\\
\Rightarrow LA = \left[ {\begin{array}{*{20}{c}}
1&0 \\
0&1
\end{array}} \right] = I \\
$
Hence, option B is left inverse of matrix A.
3. For option C .
$
\Rightarrow LA = {\text{ }}\left[ {\begin{array}{*{20}{c}}
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0 \\
{ - \dfrac{1}{2}}&{\dfrac{1}{2}}&0
\end{array}} \right]\left[ {\begin{array}{*{20}{c}}
1&{ - 1} \\
1&1 \\
2&3
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{ - \dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{ - \dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0} \\
{ - \dfrac{1}{2} \times 1 + \dfrac{1}{2} \times 1 + 0}&{ - \dfrac{1}{2} \times - 1 + \dfrac{1}{2} \times 1 + 0}
\end{array}} \right] \\
\\
\Rightarrow LA = \left[ {\begin{array}{*{20}{c}}
0&1 \\
0&1
\end{array}} \right] \ne I \\
$
Hence , option C is not the left inverse of matrix A .
Here , we got the correct answer for the question by verifying only 3 options so we will not check the other options .
Therefore ,the correct answer is option C.
Note : In this type of question first we have to remember the properties of the inverse of a matrix. Then we will select the options one by one and apply those properties with the matrix given in the question . After that we will select the right option which is satisfying the statement and if some option gets left after we get the correct option then we will not check those options . through this we will get our result.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

