
Which of the following is a composite number?
A) $23$
B) $29$
C) $32$
D) None of these
Answer
486k+ views
Hint:
Consider the factorisation of each number. If there are factors other than one and the number itself, it is a composite number. If not, it is a prime number.
Complete step by step solution:
We are given three numbers.
We have to identify the composite number among them.
Composite numbers are those numbers which have factors other than one and the number itself.
Numbers which are not composite are called prime.
Let us check each number one by one.
First number is $23$.
We can see that the unique factorisation of $23$ is $1 \times 23$. This gives $1$ and $23$ as the only factors of $23$.
Therefore $23$ is a prime number.
Next number is $29$.
We can see that the unique factorisation of $29$ is $1 \times 29$. This gives $1$ and $29$ as the only factors of $29$.
Therefore $29$ is a prime number.
The last number is $32$.
The number $32$ can be expressed as a product in different ways.
They are $1 \times 32,2 \times 16,4 \times 8$.
So $32$ is not a prime number. It has factors other than one and itself, which are $2,4,8$ and $16$.
This gives, $32$ is a composite number.
Therefore the answer is option C.
Note:
The number one has no any factors other than itself. But one is considered neither as a prime nor as a composite number. In fact, one is the only number which is not a prime or composite. Since every even number has two as a factor, we can clearly say that every even number is a composite number.
Consider the factorisation of each number. If there are factors other than one and the number itself, it is a composite number. If not, it is a prime number.
Complete step by step solution:
We are given three numbers.
We have to identify the composite number among them.
Composite numbers are those numbers which have factors other than one and the number itself.
Numbers which are not composite are called prime.
Let us check each number one by one.
First number is $23$.
We can see that the unique factorisation of $23$ is $1 \times 23$. This gives $1$ and $23$ as the only factors of $23$.
Therefore $23$ is a prime number.
Next number is $29$.
We can see that the unique factorisation of $29$ is $1 \times 29$. This gives $1$ and $29$ as the only factors of $29$.
Therefore $29$ is a prime number.
The last number is $32$.
The number $32$ can be expressed as a product in different ways.
They are $1 \times 32,2 \times 16,4 \times 8$.
So $32$ is not a prime number. It has factors other than one and itself, which are $2,4,8$ and $16$.
This gives, $32$ is a composite number.
Therefore the answer is option C.
Note:
The number one has no any factors other than itself. But one is considered neither as a prime nor as a composite number. In fact, one is the only number which is not a prime or composite. Since every even number has two as a factor, we can clearly say that every even number is a composite number.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Trending doubts
Five sentences about elephants class 5 english CBSE

Write the number names for the following numbers A class 5 maths CBSE

Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the full form of AD a After death b Anno domini class 6 social science CBSE

Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
