
Which of the following expressions is true for an ideal gas?
A.${\left( {\dfrac{{\partial V}}{{\partial T}}} \right)_P} = 0$
B.${\left( {\dfrac{{\partial P}}{{\partial T}}} \right)_V} = 0$
C.${\left( {\dfrac{{\partial U}}{{\partial V}}} \right)_T} = 0$
D.${\left( {\dfrac{{\partial U}}{{\partial T}}} \right)_V} = 0$
Answer
412.8k+ views
Hint: We have to know that, ideal gas is a theoretical gas whose particles consume irrelevant space and have no co-operations, and which therefore submits to the gas laws precisely. Or on the other hand Ideal gas will be gas which keeps every one of the gas laws at all temperature and pressing factors.
Complete answer:
We have to know that the kinetic hypothesis of gas gives the qualities of an ideal gas. A portion of the attributes are as per the following:
The gas particles are in consistent irregular movement. They travel in an orderly fashion until they impact another particle or the mass of the holder.
There is no fascination or shock between the gas atoms.
The gas particles are point masses with no volume.
Every one of the impacts are flexible. No energy is acquired or lost during the impact.
All gases at a given temperature have a similar normal dynamic energy.
For an ideal gas,
$\Delta U = n{C_V}\Delta T$
(or)
$PV = nRT$
Where,
$P$ is a pressure,
$V$ is a volume,
$n$ is a number of moles,
$R$ is a universal gas constant,
$T$ is a temperature.
Now,
$P\dfrac{{\partial V}}{{\partial T}} = nR\dfrac{{\partial T}}{{\partial T}}$
Rearrange the above expression,
${\left( {\dfrac{{\partial V}}{{\partial T}}} \right)_P} = \dfrac{{nR}}{P}$
Again,
$\dfrac{{\partial P}}{{\partial T}}V = nR\dfrac{{\partial T}}{{\partial T}}$
Then,
${\left( {\dfrac{{\partial P}}{{\partial T}}} \right)_V} = \dfrac{{nR}}{V}$
Again,
$\Delta U = n{C_V}\Delta T$
${\left( {\dfrac{{\partial U}}{{\partial V}}} \right)_T} = \dfrac{{\partial \left( {n{C_V}\Delta T} \right)}}{{\partial V}} = 0$
Therefore,
${\left( {\dfrac{{\partial U}}{{\partial T}}} \right)_T} = \dfrac{{\partial \left( {n{C_V}\Delta T} \right)}}{{\partial T}} = n{C_V}$
Hence, option (C) is correct.
Note:
We have to know that the ideal gas law can be utilized to compute the volume of gases devoured or delivered. The ideal-gas condition as often as possible is utilized to interconvert among volumes and molar sums in compound conditions. Start by changing over the mass of calcium carbonate to moles.
Complete answer:
We have to know that the kinetic hypothesis of gas gives the qualities of an ideal gas. A portion of the attributes are as per the following:
The gas particles are in consistent irregular movement. They travel in an orderly fashion until they impact another particle or the mass of the holder.
There is no fascination or shock between the gas atoms.
The gas particles are point masses with no volume.
Every one of the impacts are flexible. No energy is acquired or lost during the impact.
All gases at a given temperature have a similar normal dynamic energy.
For an ideal gas,
$\Delta U = n{C_V}\Delta T$
(or)
$PV = nRT$
Where,
$P$ is a pressure,
$V$ is a volume,
$n$ is a number of moles,
$R$ is a universal gas constant,
$T$ is a temperature.
Now,
$P\dfrac{{\partial V}}{{\partial T}} = nR\dfrac{{\partial T}}{{\partial T}}$
Rearrange the above expression,
${\left( {\dfrac{{\partial V}}{{\partial T}}} \right)_P} = \dfrac{{nR}}{P}$
Again,
$\dfrac{{\partial P}}{{\partial T}}V = nR\dfrac{{\partial T}}{{\partial T}}$
Then,
${\left( {\dfrac{{\partial P}}{{\partial T}}} \right)_V} = \dfrac{{nR}}{V}$
Again,
$\Delta U = n{C_V}\Delta T$
${\left( {\dfrac{{\partial U}}{{\partial V}}} \right)_T} = \dfrac{{\partial \left( {n{C_V}\Delta T} \right)}}{{\partial V}} = 0$
Therefore,
${\left( {\dfrac{{\partial U}}{{\partial T}}} \right)_T} = \dfrac{{\partial \left( {n{C_V}\Delta T} \right)}}{{\partial T}} = n{C_V}$
Hence, option (C) is correct.
Note:
We have to know that the ideal gas law can be utilized to compute the volume of gases devoured or delivered. The ideal-gas condition as often as possible is utilized to interconvert among volumes and molar sums in compound conditions. Start by changing over the mass of calcium carbonate to moles.
Recently Updated Pages
Master Class 12 Social Science: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
