
Which of the following expressions are polynomials in one variable and which are not? Give reason for your answer.
a) \[3{{x}^{2}}-\text{ }4x\text{ }+\text{ }15\]
b) \[{{y}^{2}}+\text{ }2\sqrt{3}\]
c) \[3~\sqrt{x}+~\sqrt{2}x\]
d) \[x-\dfrac{4}{x}\]
e) \[{{x}^{12}}+\text{ }{{y}^{3}}+\text{ }{{t}^{50}}\]
Answer
516k+ views
Hint: Before solving this question, we must know about polynomials and polynomials in one variable.
Polynomials: Polynomials are algebraic expressions that comprise of exponents which are added, subtracted or multiplied. Polynomials are of different types: namely Monomial, Binomial, and Trinomial. A monomial is a polynomial with one term. A binomial is a polynomial with two, unlike terms.
Polynomial in one variable: When there is only a single variable in the polynomial expression, then that polynomial is called a polynomial in one variable. We generally denote that single variable by x (or in some cases, y or z).
Complete step-by-step answer:
Let us now solve this question.
We shall consider every option.
a)\[3{{x}^{2}}-\text{ }4x\text{ }+\text{ }15\]
We can see that in this polynomial, there is only one variable, i.e. ‘x’
Therefore, this is a polynomial in one variable.
b)\[{{y}^{2}}+\text{ }2\sqrt{3}\]
We can see that in this polynomial, there is only one variable, i.e. ‘x’
Therefore, this is a polynomial in one variable.
c)\[3~\sqrt{x}+~\sqrt{2}x\]
We can see that in this polynomial, there is only one variable, i.e. ‘x’
Therefore, this is a polynomial in one variable.
d)\[x-\dfrac{4}{x}\]
We can see that in this polynomial, there is only one variable, i.e. ‘x’
Therefore, this is a polynomial in one variable.
e)\[{{x}^{12}}+\text{ }{{y}^{3}}+\text{ }{{t}^{50}}\]
We can see that in this polynomial, there are three variables, i.e. ‘x’, ‘y’ and ‘t’
Therefore, this is not a polynomial in one variable.
Hence, the answers of this question are (a), (b), (c), and (d).
Note: Let us now learn about monomials, binomials, trinomials and terms.
MONOMIALS: A monomial is a polynomial with one term. For example: \[2xy,\text{ }3{{a}^{3}}\] , etc.
BINOMIALS: A binomial is a polynomial with two, unlike terms. For example: \[2xy\text{ }+\text{ }3{{x}^{2}},\text{ }3{{a}^{3}}-\text{ }5y\], etc.
TRINOMIALS: A trinomial is a polynomial with three terms, which are unlike. For example:
\[~2xy\text{ }+\text{ }3{{x}^{2}}+\text{ }4,\text{ }3{{a}^{3}}-\text{ }5y\text{ }+\text{ }8\] , etc.
TERMS: A term is either a single number or variable, or the product of several numbers or variables. Terms are separated by a + or - sign in an overall expression. For example: In the trinomial \[2xy\text{ }+\text{ }3{{x}^{2}}+\text{ }4;\text{ }2xy,\text{ }3{{x}^{2}}\] , and 4 are the three separate terms.
Polynomials: Polynomials are algebraic expressions that comprise of exponents which are added, subtracted or multiplied. Polynomials are of different types: namely Monomial, Binomial, and Trinomial. A monomial is a polynomial with one term. A binomial is a polynomial with two, unlike terms.
Polynomial in one variable: When there is only a single variable in the polynomial expression, then that polynomial is called a polynomial in one variable. We generally denote that single variable by x (or in some cases, y or z).
Complete step-by-step answer:
Let us now solve this question.
We shall consider every option.
a)\[3{{x}^{2}}-\text{ }4x\text{ }+\text{ }15\]
We can see that in this polynomial, there is only one variable, i.e. ‘x’
Therefore, this is a polynomial in one variable.
b)\[{{y}^{2}}+\text{ }2\sqrt{3}\]
We can see that in this polynomial, there is only one variable, i.e. ‘x’
Therefore, this is a polynomial in one variable.
c)\[3~\sqrt{x}+~\sqrt{2}x\]
We can see that in this polynomial, there is only one variable, i.e. ‘x’
Therefore, this is a polynomial in one variable.
d)\[x-\dfrac{4}{x}\]
We can see that in this polynomial, there is only one variable, i.e. ‘x’
Therefore, this is a polynomial in one variable.
e)\[{{x}^{12}}+\text{ }{{y}^{3}}+\text{ }{{t}^{50}}\]
We can see that in this polynomial, there are three variables, i.e. ‘x’, ‘y’ and ‘t’
Therefore, this is not a polynomial in one variable.
Hence, the answers of this question are (a), (b), (c), and (d).
Note: Let us now learn about monomials, binomials, trinomials and terms.
MONOMIALS: A monomial is a polynomial with one term. For example: \[2xy,\text{ }3{{a}^{3}}\] , etc.
BINOMIALS: A binomial is a polynomial with two, unlike terms. For example: \[2xy\text{ }+\text{ }3{{x}^{2}},\text{ }3{{a}^{3}}-\text{ }5y\], etc.
TRINOMIALS: A trinomial is a polynomial with three terms, which are unlike. For example:
\[~2xy\text{ }+\text{ }3{{x}^{2}}+\text{ }4,\text{ }3{{a}^{3}}-\text{ }5y\text{ }+\text{ }8\] , etc.
TERMS: A term is either a single number or variable, or the product of several numbers or variables. Terms are separated by a + or - sign in an overall expression. For example: In the trinomial \[2xy\text{ }+\text{ }3{{x}^{2}}+\text{ }4;\text{ }2xy,\text{ }3{{x}^{2}}\] , and 4 are the three separate terms.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Trending doubts
Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility

Difference between mass and weight class 10 physics CBSE

Statistics in singular sense includes A Collection class 10 maths CBSE
