
Which number is greater, \[{{\left( 30 \right)}^{100}}\] or \[{{\left( 2 \right)}^{567}}\] .
Answer
560.7k+ views
Hint: To find the greatest among \[{{\left( 30 \right)}^{100}}\] and \[{{\left( 2 \right)}^{567}}\] , let us first consider \[{{\left( 2 \right)}^{5}}=32\] . We know that \[32>\text{ }30\], hence, \[{{\left( 2 \right)}^{5}}>\text{ }30\] . Raising both the sides to the power of 100 gives \[{{\left( {{\left( 2 \right)}^{5}} \right)}^{100}}>\text{ }{{\left( 30 \right)}^{100}}\] . Using the identity ${{({{a}^{m}})}^{n}}={{a}^{mn}}$ , we will get \[{{\left( 2 \right)}^{100\ \ \times \ \ 5}}>\text{ }{{\left( 30 \right)}^{100}}\] . Obviously, \[{{\left( 2 \right)}^{567}}\] is greater than \[{{\left( 2 \right)}^{500}}\] .By comparing this to the previous set, we will get the required answer.
Complete step by step answer:
We need to find the greatest among \[{{\left( 30 \right)}^{100}}\] and \[{{\left( 2 \right)}^{567}}\] .
Since the powers are large numbers, it is good not to go for expanding each. Let us simplify the powers first.
We know that, \[{{\left( 2 \right)}^{5}}=2\times 2\times 2\times 2\times 2\] is equal to \[32\] .
And, we know that \[32>\text{ }30\]
Therefore, \[{{\left( 2 \right)}^{5}}>\text{ }30\]
Now, raising both the sides to the power of 100, we get:-
\[\Rightarrow {{\left( {{\left( 2 \right)}^{5}} \right)}^{100}}>\text{ }{{\left( 30 \right)}^{100}}\]
We know that ${{({{a}^{m}})}^{n}}={{a}^{mn}}$ .
Hence, the above equality becomes,
\[\Rightarrow {{\left( 2 \right)}^{100\ \ \times \ \ 5}}>\text{ }{{\left( 30 \right)}^{100}}\]
Multiplying, we will get
\[\Rightarrow {{\left( 2 \right)}^{500}}>\text{ }{{\left( 30 \right)}^{100}}\]
Now, let us consider \[{{\left( 2 \right)}^{567}}\] .
We know that \[{{\left( 2 \right)}^{567}}\ \ \text{must}\ \ \text{be}\ \ \text{greater}\ \ \text{than}\ \ {{\left( 2 \right)}^{500}}\]
So, \[{{2}^{567}}\ \ >\ \ {{2}^{500}}\]
Now, as \[{{\left( 2 \right)}^{5}}>\text{ }30\]
Similarly, \[{{\left( 2 \right)}^{500}}>\text{ }{{\left( 30 \right)}^{100}}\]
And, as \[{{2}^{567}}\ \ >\ \ {{2}^{500}}\]
Therefore, \[{{\left( 2 \right)}^{567}}>\text{ }{{\left( 30 \right)}^{100}}\]
Hence, \[{{\left( 2 \right)}^{567}}\] is the greater number.
Note: Students often do mistakes in solving the numbers with exponents. For example, if we have a number \[{{3}^{6}}\] . So, if we are asked to solve this, some students multiply the base by the exponent, i.e. if we are talking about the example, multiply 3 by 6. This is wrong. They need to multiply 3 by 3 six times.
\[\Rightarrow 3\ \ \times \ \ 3\ \ \times \ \ 3\ \ \times \ \ 3\ \ \times \ \ 3\ \ \times \ \ 3\ =729\]
Also the properties and rules of exponents must be thorough. In problems with higher exponents, do not expand them. Instead , use the properties to simplify them.
Complete step by step answer:
We need to find the greatest among \[{{\left( 30 \right)}^{100}}\] and \[{{\left( 2 \right)}^{567}}\] .
Since the powers are large numbers, it is good not to go for expanding each. Let us simplify the powers first.
We know that, \[{{\left( 2 \right)}^{5}}=2\times 2\times 2\times 2\times 2\] is equal to \[32\] .
And, we know that \[32>\text{ }30\]
Therefore, \[{{\left( 2 \right)}^{5}}>\text{ }30\]
Now, raising both the sides to the power of 100, we get:-
\[\Rightarrow {{\left( {{\left( 2 \right)}^{5}} \right)}^{100}}>\text{ }{{\left( 30 \right)}^{100}}\]
We know that ${{({{a}^{m}})}^{n}}={{a}^{mn}}$ .
Hence, the above equality becomes,
\[\Rightarrow {{\left( 2 \right)}^{100\ \ \times \ \ 5}}>\text{ }{{\left( 30 \right)}^{100}}\]
Multiplying, we will get
\[\Rightarrow {{\left( 2 \right)}^{500}}>\text{ }{{\left( 30 \right)}^{100}}\]
Now, let us consider \[{{\left( 2 \right)}^{567}}\] .
We know that \[{{\left( 2 \right)}^{567}}\ \ \text{must}\ \ \text{be}\ \ \text{greater}\ \ \text{than}\ \ {{\left( 2 \right)}^{500}}\]
So, \[{{2}^{567}}\ \ >\ \ {{2}^{500}}\]
Now, as \[{{\left( 2 \right)}^{5}}>\text{ }30\]
Similarly, \[{{\left( 2 \right)}^{500}}>\text{ }{{\left( 30 \right)}^{100}}\]
And, as \[{{2}^{567}}\ \ >\ \ {{2}^{500}}\]
Therefore, \[{{\left( 2 \right)}^{567}}>\text{ }{{\left( 30 \right)}^{100}}\]
Hence, \[{{\left( 2 \right)}^{567}}\] is the greater number.
Note: Students often do mistakes in solving the numbers with exponents. For example, if we have a number \[{{3}^{6}}\] . So, if we are asked to solve this, some students multiply the base by the exponent, i.e. if we are talking about the example, multiply 3 by 6. This is wrong. They need to multiply 3 by 3 six times.
\[\Rightarrow 3\ \ \times \ \ 3\ \ \times \ \ 3\ \ \times \ \ 3\ \ \times \ \ 3\ \ \times \ \ 3\ =729\]
Also the properties and rules of exponents must be thorough. In problems with higher exponents, do not expand them. Instead , use the properties to simplify them.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

