
Which is larger, \[{{\left( 2.5 \right)}^{6}}\] or \[{{\left( 1.25 \right)}^{12}}?\]
Answer
580.5k+ views
Hint: We have to compare both the terms to find which one is bigger. To do so, we will write them in the simplest form, that is, \[2.5=\dfrac{5}{2}\] and \[1.25=\dfrac{5}{4}.\] Then we can compare how \[{{\left( 2.5 \right)}^{6}}\] and \[{{\left( 1.25 \right)}^{12}}\] are related to each other by finding the value of \[{{\left( 2.5 \right)}^{6}}=\dfrac{{{5}^{6}}}{{{2}^{6}}}\] and \[{{\left( 1.25 \right)}^{12}}=\dfrac{{{5}^{12}}}{{{2}^{24}}}.\]
Complete step-by-step answer:
We are asked that which one is larger out of \[{{\left( 2.5 \right)}^{6}}\] and \[{{\left( 1.25 \right)}^{12}}.\] First, we will simplify both the terms.
\[2.5=\dfrac{25}{10}\]
On solving, we get,
\[\Rightarrow 2.5=\dfrac{5}{2}\]
So,
\[{{\left( 2.5 \right)}^{6}}={{\left( \dfrac{5}{2} \right)}^{6}}\]
We know that,
\[{{\left( \dfrac{a}{b} \right)}^{k}}=\dfrac{{{a}^{k}}}{{{b}^{k}}}\]
So, we can write,
\[\Rightarrow {{\left( 2.5 \right)}^{6}}=\dfrac{{{5}^{6}}}{{{2}^{6}}}.....\left( ii \right)\]
Similarly, we can write 1.25 as,
\[1.25=\dfrac{120}{10}\]
On solving, we will get,
\[\Rightarrow 1.25=\dfrac{5}{4}\]
So,
\[\Rightarrow {{\left( 1.25 \right)}^{12}}={{\left( \dfrac{5}{4} \right)}^{12}}\]
We know that,
\[{{\left( \dfrac{a}{b} \right)}^{k}}=\dfrac{{{a}^{k}}}{{{b}^{k}}}\]
\[\Rightarrow {{\left( 1.25 \right)}^{12}}=\dfrac{{{5}^{12}}}{{{4}^{12}}}\]
As we know that, \[{{2}^{2}}=4,\] we can write,
\[\Rightarrow {{\left( 1.25 \right)}^{12}}=\dfrac{{{5}^{12}}}{{{\left( {{2}^{2}} \right)}^{12}}}\]
We know that, \[{{\left( {{a}^{b}} \right)}^{c}}={{a}^{bc}}\]
\[\Rightarrow {{\left( 1.25 \right)}^{12}}=\dfrac{{{5}^{12}}}{{{2}^{24}}}\]
Now,
\[{{\left( 1.25 \right)}^{12}}=\dfrac{{{5}^{6+6}}}{{{2}^{6+18}}}\]
As, \[{{a}^{x+y}}={{a}^{x}}.{{a}^{y}},\] so
\[\Rightarrow {{\left( 1.25 \right)}^{12}}=\dfrac{{{5}^{6}}}{{{2}^{6}}}\times \dfrac{{{5}^{6}}}{{{2}^{18}}}......\left( ii \right)\]
Now, we know that,
\[{{5}^{2}}=25\]
\[{{2}^{5}}=2\times 2\times 2\times 2\times 2=32\]
Clearly, 25 < 32
\[\Rightarrow {{5}^{2}}<{{2}^{5}}\]
Simplifying further, we get,
\[\Rightarrow \dfrac{{{5}^{2}}}{{{2}^{5}}}<1\]
Now we know that if a < 1, then \[{{a}^{n}}\] is also less than 1 for all \[n\ge 1.\]
As \[\dfrac{{{5}^{2}}}{{{2}^{5}}}<1,\] so,
\[{{\left( \dfrac{{{5}^{2}}}{{{2}^{5}}} \right)}^{3}}<1\]
Simplifying using \[{{\left( {{a}^{b}} \right)}^{c}}={{a}^{bc}},\] we get,
\[\dfrac{{{5}^{6}}}{{{2}^{18}}}<1.....\left( iii \right)\]
Now, we use (iii) in (ii), we get,
\[\Rightarrow {{\left( 1.25 \right)}^{12}}=\dfrac{{{5}^{6}}}{{{2}^{6}}}\times \dfrac{{{5}^{6}}}{{{2}^{18}}}\]
As, \[\dfrac{{{5}^{6}}}{{{2}^{18}}}<1,\] so,
\[\Rightarrow {{\left( 1.25 \right)}^{12}}<\dfrac{{{5}^{6}}}{{{2}^{6}}}\times 1\]
\[\Rightarrow {{\left( 1.25 \right)}^{12}}<\dfrac{{{5}^{6}}}{{{2}^{6}}}\]
Using (i), we have, \[\dfrac{{{5}^{6}}}{{{2}^{6}}}={{\left( 2.5 \right)}^{6}}\]
So, we get,
\[{{\left( 1.25 \right)}^{12}}<{{\left( 2.5 \right)}^{6}}\]
So, we get, \[{{\left( 2.5 \right)}^{6}}\] is larger than \[{{\left( 1.25 \right)}^{12}}.\]
Note: We have to compare \[{{\left( 1.25 \right)}^{12}}\] with \[{{\left( 2.5 \right)}^{6}}.\] So, while expanding \[{{\left( 1.25 \right)}^{12}}=\dfrac{{{5}^{12}}}{{{2}^{24}}}\] into more simple term, we expand the term by keeping in the mind the value of \[{{\left( 2.5 \right)}^{6}}\] which is \[\dfrac{{{5}^{6}}}{{{2}^{6}}}.\] So, we separate this term out and then we will write as \[{{\left( 1.25 \right)}^{12}}=\dfrac{{{5}^{6}}}{{{2}^{6}}}.\dfrac{{{5}^{6}}}{{{5}^{18}}}.\] When we have this, we will check how other term affects the terms.
Complete step-by-step answer:
We are asked that which one is larger out of \[{{\left( 2.5 \right)}^{6}}\] and \[{{\left( 1.25 \right)}^{12}}.\] First, we will simplify both the terms.
\[2.5=\dfrac{25}{10}\]
On solving, we get,
\[\Rightarrow 2.5=\dfrac{5}{2}\]
So,
\[{{\left( 2.5 \right)}^{6}}={{\left( \dfrac{5}{2} \right)}^{6}}\]
We know that,
\[{{\left( \dfrac{a}{b} \right)}^{k}}=\dfrac{{{a}^{k}}}{{{b}^{k}}}\]
So, we can write,
\[\Rightarrow {{\left( 2.5 \right)}^{6}}=\dfrac{{{5}^{6}}}{{{2}^{6}}}.....\left( ii \right)\]
Similarly, we can write 1.25 as,
\[1.25=\dfrac{120}{10}\]
On solving, we will get,
\[\Rightarrow 1.25=\dfrac{5}{4}\]
So,
\[\Rightarrow {{\left( 1.25 \right)}^{12}}={{\left( \dfrac{5}{4} \right)}^{12}}\]
We know that,
\[{{\left( \dfrac{a}{b} \right)}^{k}}=\dfrac{{{a}^{k}}}{{{b}^{k}}}\]
\[\Rightarrow {{\left( 1.25 \right)}^{12}}=\dfrac{{{5}^{12}}}{{{4}^{12}}}\]
As we know that, \[{{2}^{2}}=4,\] we can write,
\[\Rightarrow {{\left( 1.25 \right)}^{12}}=\dfrac{{{5}^{12}}}{{{\left( {{2}^{2}} \right)}^{12}}}\]
We know that, \[{{\left( {{a}^{b}} \right)}^{c}}={{a}^{bc}}\]
\[\Rightarrow {{\left( 1.25 \right)}^{12}}=\dfrac{{{5}^{12}}}{{{2}^{24}}}\]
Now,
\[{{\left( 1.25 \right)}^{12}}=\dfrac{{{5}^{6+6}}}{{{2}^{6+18}}}\]
As, \[{{a}^{x+y}}={{a}^{x}}.{{a}^{y}},\] so
\[\Rightarrow {{\left( 1.25 \right)}^{12}}=\dfrac{{{5}^{6}}}{{{2}^{6}}}\times \dfrac{{{5}^{6}}}{{{2}^{18}}}......\left( ii \right)\]
Now, we know that,
\[{{5}^{2}}=25\]
\[{{2}^{5}}=2\times 2\times 2\times 2\times 2=32\]
Clearly, 25 < 32
\[\Rightarrow {{5}^{2}}<{{2}^{5}}\]
Simplifying further, we get,
\[\Rightarrow \dfrac{{{5}^{2}}}{{{2}^{5}}}<1\]
Now we know that if a < 1, then \[{{a}^{n}}\] is also less than 1 for all \[n\ge 1.\]
As \[\dfrac{{{5}^{2}}}{{{2}^{5}}}<1,\] so,
\[{{\left( \dfrac{{{5}^{2}}}{{{2}^{5}}} \right)}^{3}}<1\]
Simplifying using \[{{\left( {{a}^{b}} \right)}^{c}}={{a}^{bc}},\] we get,
\[\dfrac{{{5}^{6}}}{{{2}^{18}}}<1.....\left( iii \right)\]
Now, we use (iii) in (ii), we get,
\[\Rightarrow {{\left( 1.25 \right)}^{12}}=\dfrac{{{5}^{6}}}{{{2}^{6}}}\times \dfrac{{{5}^{6}}}{{{2}^{18}}}\]
As, \[\dfrac{{{5}^{6}}}{{{2}^{18}}}<1,\] so,
\[\Rightarrow {{\left( 1.25 \right)}^{12}}<\dfrac{{{5}^{6}}}{{{2}^{6}}}\times 1\]
\[\Rightarrow {{\left( 1.25 \right)}^{12}}<\dfrac{{{5}^{6}}}{{{2}^{6}}}\]
Using (i), we have, \[\dfrac{{{5}^{6}}}{{{2}^{6}}}={{\left( 2.5 \right)}^{6}}\]
So, we get,
\[{{\left( 1.25 \right)}^{12}}<{{\left( 2.5 \right)}^{6}}\]
So, we get, \[{{\left( 2.5 \right)}^{6}}\] is larger than \[{{\left( 1.25 \right)}^{12}}.\]
Note: We have to compare \[{{\left( 1.25 \right)}^{12}}\] with \[{{\left( 2.5 \right)}^{6}}.\] So, while expanding \[{{\left( 1.25 \right)}^{12}}=\dfrac{{{5}^{12}}}{{{2}^{24}}}\] into more simple term, we expand the term by keeping in the mind the value of \[{{\left( 2.5 \right)}^{6}}\] which is \[\dfrac{{{5}^{6}}}{{{2}^{6}}}.\] So, we separate this term out and then we will write as \[{{\left( 1.25 \right)}^{12}}=\dfrac{{{5}^{6}}}{{{2}^{6}}}.\dfrac{{{5}^{6}}}{{{5}^{18}}}.\] When we have this, we will check how other term affects the terms.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

The number of words can be formed from the letters class 10 maths CBSE

Master Class 12 Economics: Engaging Questions & Answers for Success

Least count of spring balance if spring balance has class 10 physics CBSE

Explain the political and economic causes for the revolt class 10 social science CBSE

Nagarjuna is known as the Einstein of India because class 10 social science CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE


