
Which is larger \[{\left( {1.01} \right)^{1000000}}\]or 10,000? Find the $17^{th}$ and $18^{th}$ terms in the expansion\[{\left( {2 + a} \right)^{50}}\]are equal.
Answer
573.3k+ views
Hint: To solve this question we must have the idea about the Binomial expansion of\[{\left( {1 + x} \right)^n}\]. First we have to express 1.01 as the sum of 1 and 0.01. Then we have to expand \[{\left( {1.01} \right)^{1000000}}\] using the Binomial theorem to evaluate it. Then the obtained must be compared to 10,000 and determine which is larger.
Complete step by step answer:
We know that an algebraic expression containing two terms is called a binomial expression. The Binomial theorem states that
“For any positive integer n, the nth power of the sum of two numbers y and x may be expressed as the sum of \[n+1\] terms of the form which are given by
\[{{\left( y+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{y}^{n-r}}{{x}^{r}}}\]
Or, \[{{\left( y+x \right)}^{n}}={}^{n}{{C}_{0}}{{y}^{n}}+{}^{n}{{C}_{1}}{{y}^{n-1}}x+{}^{n}{{C}_{2}}{{y}^{n-2}}{{x}^{2}}+.............+{}^{n}{{C}_{n-1}}y{{x}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n}}\]….. (1)
Where,
\[{}^{n}{{C}_{r}}=\dfrac{n!}{(n-r)!r!}\]………………… (2)
Now for the expansion of substituting\[y=1\]in eq. (1) we will get
\[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}{{1}^{n}}+{}^{n}{{C}_{1}}{{1}^{n-1}}x+{}^{n}{{C}_{2}}{{1}^{n-2}}{{x}^{2}}+..........+{{x}^{n}}\]
\[{{(1+x)}^{n}}=1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+...........+{{x}^{n}}\]………………….. (3)
We have to find out\[{{\left( 1.01 \right)}^{1000000}}\]. Let’s express 1.01 as\[\left( 1+0.01 \right)\]. Now considering the expression \[{{\left( 1+0.01 \right)}^{1000000}}\]as \[{{\left( 1+x \right)}^{n}}\]let’s substitute \[x=0.01\]and \[n=1000000\]in the eq. (3) we will get
\[{{\left( 1+0.01 \right)}^{1000000}}=1+1000000\times 0.01+..........\]
Or, \[{{\left( 1+0.01 \right)}^{1000000}}=10,001+.........\]
Here we see that in the expansion 10,001 is added to the positive terms. So the value to be obtained will be greater than 10,000.
Therefore \[{{\left( 1.01 \right)}^{1000000}}\]is larger than 10,000.
Now substituting \[b=2\]and\[n=50\]in eq. (1) we will get the expansion for \[{{\left( 2+a \right)}^{50}}\]which is given by,
\[{{\left( 2+a \right)}^{50}}=\sum\limits_{r=0}^{50}{{}^{50}{{C}_{r}}{{2}^{50-r}}{{a}^{r}}}\]
\[{{\left( 2+a \right)}^{50}}={}^{50}{{C}_{0}}{{2}^{50}}+{}^{50}{{C}_{1}}{{2}^{50-1}}{{a}^{1}}+{}^{n}{{C}_{2}}{{2}^{50-2}}{{a}^{2}}+.............+{}^{50}{{C}_{50-1}}2{{a}^{50-1}}+{}^{50}{{C}_{50}}{{b}^{50}}\]……………. (4)
From the Binomial theorem we see that the Binomial expansion of \[{{\left( 2+a \right)}^{50}}\]contains \[50+1=51\]terms. From eq. (4), we get that
The $1^{st}$ term of \[{{\left( 2+a \right)}^{50}}\]is \[{}^{50}{{C}_{0}}{{2}^{50}}={}^{50}{{C}_{1-1}}{{2}^{50-(1-1)}}{{a}^{1-1}}\]
The $2^{nd}$ term of \[{{\left( 2+a \right)}^{50}}\]is \[{}^{50}{{C}_{1}}{{2}^{50-1}}{{a}^{1}}={}^{50}{{C}_{2-1}}{{2}^{50-(2-1)}}{{a}^{2-1}}\]
The $3^{rd}$ term is \[{}^{50}{{C}_{2}}{{2}^{50-2}}{{a}^{2}}={}^{50}{{C}_{3-1}}{{2}^{50-(3-1)}}{{a}^{3-1}}\]
And so on
Similarly \[{{r}^{th}}\] term is given by \[{}^{50}{{C}_{r-1}}{{2}^{50-(r-1)}}{{a}^{r-1}}\]
Now we will find the ${{17}^{th}}\text{ and }{{18}^{th}}$ term in the expansion \[{{\left( 2+a \right)}^{50}}\]which is given by
\[{{T}_{17}}={}^{50}{{C}_{17-1}}{{2}^{50-(17-1)}}{{a}^{17-1}}={}^{50}{{C}_{16}}{{2}^{34}}{{a}^{16}}\]………………………………… (5)
And \[{{T}_{18}}={}^{50}{{C}_{18-1}}{{2}^{50-(18-1)}}{{a}^{18-1}}={}^{50}{{C}_{17}}{{2}^{33}}{{a}^{17}}\] ………………………………. (6)
But given that in the expansion of\[{{\left( 2+a \right)}^{50}}\], the 17th and ${{17}^{th}}\text{ and }{{18}^{th}}$ term are equal, therefore we get
\[\begin{align}
& \Rightarrow {}^{50}{{C}_{16}}{{2}^{34}}{{a}^{16}}={}^{50}{{C}_{17}}{{2}^{33}}{{a}^{17}} \\
& \Rightarrow \dfrac{{{a}^{17}}}{{{a}^{16}}}=\dfrac{{}^{50}{{C}_{16}}{{2}^{34}}}{{}^{50}{{C}_{17}}{{2}^{33}}}
\end{align}\]
\[\Rightarrow a=2\times \dfrac{\dfrac{50!}{(50-16)!16!}}{\dfrac{50!}{(50-17)!17!}}\]
\[\Rightarrow a=2\times \dfrac{\left( 33! \right)\left( 17! \right)}{\left( 34! \right)\left( 16! \right)}\]
Or, \[\Rightarrow a=2\times \dfrac{\left( 33! \right)\times 17\times \left( 16! \right)}{34\times \left( 33! \right)\left( 16! \right)}\]
On simplifying, we get
\[\Rightarrow a=2\times \dfrac{17}{34}\]
On solving, we get
\[\Rightarrow a=1\]
Here we got the value of \[a=1\].
Note: Factorial of a number n that is \[n!\] defined only for any nonnegative integer n. The factorial of number n can be expressed as \[n!=n\left( n-1 \right)\left( n-2 \right)\times ........\times 3\times 2\times 1\] or \[n!=n\left( n-1 \right)!\]. Try not to make any calculation mistakes.
Complete step by step answer:
We know that an algebraic expression containing two terms is called a binomial expression. The Binomial theorem states that
“For any positive integer n, the nth power of the sum of two numbers y and x may be expressed as the sum of \[n+1\] terms of the form which are given by
\[{{\left( y+x \right)}^{n}}=\sum\limits_{r=0}^{n}{{}^{n}{{C}_{r}}{{y}^{n-r}}{{x}^{r}}}\]
Or, \[{{\left( y+x \right)}^{n}}={}^{n}{{C}_{0}}{{y}^{n}}+{}^{n}{{C}_{1}}{{y}^{n-1}}x+{}^{n}{{C}_{2}}{{y}^{n-2}}{{x}^{2}}+.............+{}^{n}{{C}_{n-1}}y{{x}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n}}\]….. (1)
Where,
\[{}^{n}{{C}_{r}}=\dfrac{n!}{(n-r)!r!}\]………………… (2)
Now for the expansion of substituting\[y=1\]in eq. (1) we will get
\[{{\left( 1+x \right)}^{n}}={}^{n}{{C}_{0}}{{1}^{n}}+{}^{n}{{C}_{1}}{{1}^{n-1}}x+{}^{n}{{C}_{2}}{{1}^{n-2}}{{x}^{2}}+..........+{{x}^{n}}\]
\[{{(1+x)}^{n}}=1+nx+\dfrac{n(n-1)}{2!}{{x}^{2}}+...........+{{x}^{n}}\]………………….. (3)
We have to find out\[{{\left( 1.01 \right)}^{1000000}}\]. Let’s express 1.01 as\[\left( 1+0.01 \right)\]. Now considering the expression \[{{\left( 1+0.01 \right)}^{1000000}}\]as \[{{\left( 1+x \right)}^{n}}\]let’s substitute \[x=0.01\]and \[n=1000000\]in the eq. (3) we will get
\[{{\left( 1+0.01 \right)}^{1000000}}=1+1000000\times 0.01+..........\]
Or, \[{{\left( 1+0.01 \right)}^{1000000}}=10,001+.........\]
Here we see that in the expansion 10,001 is added to the positive terms. So the value to be obtained will be greater than 10,000.
Therefore \[{{\left( 1.01 \right)}^{1000000}}\]is larger than 10,000.
Now substituting \[b=2\]and\[n=50\]in eq. (1) we will get the expansion for \[{{\left( 2+a \right)}^{50}}\]which is given by,
\[{{\left( 2+a \right)}^{50}}=\sum\limits_{r=0}^{50}{{}^{50}{{C}_{r}}{{2}^{50-r}}{{a}^{r}}}\]
\[{{\left( 2+a \right)}^{50}}={}^{50}{{C}_{0}}{{2}^{50}}+{}^{50}{{C}_{1}}{{2}^{50-1}}{{a}^{1}}+{}^{n}{{C}_{2}}{{2}^{50-2}}{{a}^{2}}+.............+{}^{50}{{C}_{50-1}}2{{a}^{50-1}}+{}^{50}{{C}_{50}}{{b}^{50}}\]……………. (4)
From the Binomial theorem we see that the Binomial expansion of \[{{\left( 2+a \right)}^{50}}\]contains \[50+1=51\]terms. From eq. (4), we get that
The $1^{st}$ term of \[{{\left( 2+a \right)}^{50}}\]is \[{}^{50}{{C}_{0}}{{2}^{50}}={}^{50}{{C}_{1-1}}{{2}^{50-(1-1)}}{{a}^{1-1}}\]
The $2^{nd}$ term of \[{{\left( 2+a \right)}^{50}}\]is \[{}^{50}{{C}_{1}}{{2}^{50-1}}{{a}^{1}}={}^{50}{{C}_{2-1}}{{2}^{50-(2-1)}}{{a}^{2-1}}\]
The $3^{rd}$ term is \[{}^{50}{{C}_{2}}{{2}^{50-2}}{{a}^{2}}={}^{50}{{C}_{3-1}}{{2}^{50-(3-1)}}{{a}^{3-1}}\]
And so on
Similarly \[{{r}^{th}}\] term is given by \[{}^{50}{{C}_{r-1}}{{2}^{50-(r-1)}}{{a}^{r-1}}\]
Now we will find the ${{17}^{th}}\text{ and }{{18}^{th}}$ term in the expansion \[{{\left( 2+a \right)}^{50}}\]which is given by
\[{{T}_{17}}={}^{50}{{C}_{17-1}}{{2}^{50-(17-1)}}{{a}^{17-1}}={}^{50}{{C}_{16}}{{2}^{34}}{{a}^{16}}\]………………………………… (5)
And \[{{T}_{18}}={}^{50}{{C}_{18-1}}{{2}^{50-(18-1)}}{{a}^{18-1}}={}^{50}{{C}_{17}}{{2}^{33}}{{a}^{17}}\] ………………………………. (6)
But given that in the expansion of\[{{\left( 2+a \right)}^{50}}\], the 17th and ${{17}^{th}}\text{ and }{{18}^{th}}$ term are equal, therefore we get
\[\begin{align}
& \Rightarrow {}^{50}{{C}_{16}}{{2}^{34}}{{a}^{16}}={}^{50}{{C}_{17}}{{2}^{33}}{{a}^{17}} \\
& \Rightarrow \dfrac{{{a}^{17}}}{{{a}^{16}}}=\dfrac{{}^{50}{{C}_{16}}{{2}^{34}}}{{}^{50}{{C}_{17}}{{2}^{33}}}
\end{align}\]
\[\Rightarrow a=2\times \dfrac{\dfrac{50!}{(50-16)!16!}}{\dfrac{50!}{(50-17)!17!}}\]
\[\Rightarrow a=2\times \dfrac{\left( 33! \right)\left( 17! \right)}{\left( 34! \right)\left( 16! \right)}\]
Or, \[\Rightarrow a=2\times \dfrac{\left( 33! \right)\times 17\times \left( 16! \right)}{34\times \left( 33! \right)\left( 16! \right)}\]
On simplifying, we get
\[\Rightarrow a=2\times \dfrac{17}{34}\]
On solving, we get
\[\Rightarrow a=1\]
Here we got the value of \[a=1\].
Note: Factorial of a number n that is \[n!\] defined only for any nonnegative integer n. The factorial of number n can be expressed as \[n!=n\left( n-1 \right)\left( n-2 \right)\times ........\times 3\times 2\times 1\] or \[n!=n\left( n-1 \right)!\]. Try not to make any calculation mistakes.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

