
Which is an example of auto catalyst?
A. Hydrolysis of ethyl acetate
B. Decomposition of TNG
C. Oxidation of oxalic acid
D. All of the above
Answer
580.2k+ views
Hint: In some reactions, one of the products acts as a catalyst; as initially the reaction is slow but as the reaction proceeds and the products are formed, the reaction rate increases. This phenomenon is known as auto-catalysis.
Complete answer:
Before discussing the options of auto catalyst, let us see what is auto catalyst. Autocatalysis is the reaction which is catalyzed by one of its products or catalysts are generally foreign agents but sometimes reaction’s products formed may act as a catalyst and the catalyst is called auto catalyst. Let us get some briefing of the examples now:
A. Hydrolysis of ethyl acetate: Hydrolysis is a chemical decomposition which involves breaking of a bond and the addition of elements like water. In hydrolysis of ethyl acetate, an alkali which is sodium hydroxide. $\text{HCl}$is used as a catalyst here which initiates the reaction.
$\text{C}{{\text{H}}_{3}}\text{COO}{{\text{C}}_{2}}{{\text{H}}_{5}}+\text{NaOH}\left( \text{aq} \right)\xrightarrow{\text{HCl/}{{\text{H}}^{+}}}\text{C}{{\text{H}}_{3}}\text{COONa}\left( \text{aq} \right)+\text{C}{{\text{H}}_{3}}\text{C}{{\text{H}}_{2}}\text{OH}$
B. Decomposition of TNG: TNG is abbreviated as trinitroglycerin wit molecular formula (${{\text{C}}_{3}}{{\text{H}}_{5}}{{\text{N}}_{3}}{{\text{O}}_{9}}$). In decomposition of trinitroglycerin reaction, gases formed act as catalysts for the reaction. $\text{4}{{\text{C}}_{3}}{{\text{H}}_{5}}{{\text{N}}_{3}}{{\text{O}}_{9}}\left( \text{s} \right)\to \text{6}{{\text{N}}_{2}}\left( \text{g} \right)+\text{12CO}\left( \text{g} \right)+\text{10}{{\text{H}}_{2}}\text{O}\left( \text{g} \right)+7{{\text{O}}_{2}}\left( \text{g} \right)$. This is an example of auto-catalysis.
C. Oxidation of oxalic acid$\text{2KMn}{{\text{O}}_{4}}+\text{2}{{\text{H}}_{2}}\text{S}{{\text{O}}_{4}}+\text{5}{{\text{H}}_{2}}{{\text{C}}_{2}}{{\text{O}}_{4}}\text{.2}{{\text{H}}_{2}}\text{O}\to {{\text{K}}_{2}}\text{S}{{\text{O}}_{4}}+2\text{MnS}{{\text{O}}_{4}}+18{{\text{H}}_{2}}\text{O}+\text{10C}{{\text{O}}_{2}}$ is a redox reaction. Oxalic acid is oxidised to carbon dioxide by $\text{KMn}{{\text{O}}_{4}}$which itself gets reduced to $\text{MnS}{{\text{O}}_{4}}$. The reaction produces $\text{M}{{\text{n}}^{+2}}$, which is the auto-catalyst of this reaction. When $\text{KMn}{{\text{O}}_{4}}$undergoes a reaction with an acidified oxalate solution, initially, the rate of the reaction is slow. There is an increment in rate of reaction due to the formation of $\text{M}{{\text{n}}^{+2}}$ ions.
The correct answer to this question is option ‘d’ (all of the above), which includes hydrolysis of ethyl acetate, decomposition of TNG and oxidation of oxalic acid are the examples of auto-catalysis.
Note: It is a myth that catalysts affect the reaction in a positive way only. There are some catalysts also which decrease the rate of reaction and such catalysts are called negative catalysts. On the other hand, the catalysts which accelerate the rate are positive catalysts.
For example: In production of sodium sulphate from sodium sulphite by oxidation but the presence of ethanol hampers the process, $\text{N}{{\text{a}}_{2}}\text{S}{{\text{O}}_{3}}+{{\text{O}}_{2}}\xrightarrow{{{\text{C}}_{2}}{{\text{H}}_{5}}\text{OH}}\text{N}{{\text{a}}_{2}}\text{S}{{\text{O}}_{4}}$.
Complete answer:
Before discussing the options of auto catalyst, let us see what is auto catalyst. Autocatalysis is the reaction which is catalyzed by one of its products or catalysts are generally foreign agents but sometimes reaction’s products formed may act as a catalyst and the catalyst is called auto catalyst. Let us get some briefing of the examples now:
A. Hydrolysis of ethyl acetate: Hydrolysis is a chemical decomposition which involves breaking of a bond and the addition of elements like water. In hydrolysis of ethyl acetate, an alkali which is sodium hydroxide. $\text{HCl}$is used as a catalyst here which initiates the reaction.
$\text{C}{{\text{H}}_{3}}\text{COO}{{\text{C}}_{2}}{{\text{H}}_{5}}+\text{NaOH}\left( \text{aq} \right)\xrightarrow{\text{HCl/}{{\text{H}}^{+}}}\text{C}{{\text{H}}_{3}}\text{COONa}\left( \text{aq} \right)+\text{C}{{\text{H}}_{3}}\text{C}{{\text{H}}_{2}}\text{OH}$
B. Decomposition of TNG: TNG is abbreviated as trinitroglycerin wit molecular formula (${{\text{C}}_{3}}{{\text{H}}_{5}}{{\text{N}}_{3}}{{\text{O}}_{9}}$). In decomposition of trinitroglycerin reaction, gases formed act as catalysts for the reaction. $\text{4}{{\text{C}}_{3}}{{\text{H}}_{5}}{{\text{N}}_{3}}{{\text{O}}_{9}}\left( \text{s} \right)\to \text{6}{{\text{N}}_{2}}\left( \text{g} \right)+\text{12CO}\left( \text{g} \right)+\text{10}{{\text{H}}_{2}}\text{O}\left( \text{g} \right)+7{{\text{O}}_{2}}\left( \text{g} \right)$. This is an example of auto-catalysis.
C. Oxidation of oxalic acid$\text{2KMn}{{\text{O}}_{4}}+\text{2}{{\text{H}}_{2}}\text{S}{{\text{O}}_{4}}+\text{5}{{\text{H}}_{2}}{{\text{C}}_{2}}{{\text{O}}_{4}}\text{.2}{{\text{H}}_{2}}\text{O}\to {{\text{K}}_{2}}\text{S}{{\text{O}}_{4}}+2\text{MnS}{{\text{O}}_{4}}+18{{\text{H}}_{2}}\text{O}+\text{10C}{{\text{O}}_{2}}$ is a redox reaction. Oxalic acid is oxidised to carbon dioxide by $\text{KMn}{{\text{O}}_{4}}$which itself gets reduced to $\text{MnS}{{\text{O}}_{4}}$. The reaction produces $\text{M}{{\text{n}}^{+2}}$, which is the auto-catalyst of this reaction. When $\text{KMn}{{\text{O}}_{4}}$undergoes a reaction with an acidified oxalate solution, initially, the rate of the reaction is slow. There is an increment in rate of reaction due to the formation of $\text{M}{{\text{n}}^{+2}}$ ions.
The correct answer to this question is option ‘d’ (all of the above), which includes hydrolysis of ethyl acetate, decomposition of TNG and oxidation of oxalic acid are the examples of auto-catalysis.
Note: It is a myth that catalysts affect the reaction in a positive way only. There are some catalysts also which decrease the rate of reaction and such catalysts are called negative catalysts. On the other hand, the catalysts which accelerate the rate are positive catalysts.
For example: In production of sodium sulphate from sodium sulphite by oxidation but the presence of ethanol hampers the process, $\text{N}{{\text{a}}_{2}}\text{S}{{\text{O}}_{3}}+{{\text{O}}_{2}}\xrightarrow{{{\text{C}}_{2}}{{\text{H}}_{5}}\text{OH}}\text{N}{{\text{a}}_{2}}\text{S}{{\text{O}}_{4}}$.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

