
Which among the following is larger between ${99^{50}} + {100^{50}}{\text{ and 10}}{{\text{1}}^{50}}$.
Answer
618.6k+ views
Hint: There can be two ways to solve this problem the first one will be the direct use of calculator but however let’s come to the second method, use the binomial expansion for entities in the form of \[{\left( {x + a} \right)^n}\]. Convert the given number as additive or subtractive of 100. Then use binomial expansion to figure out which one is larger.
Complete step-by-step answer:
We have to find out which one is larger
$\left( 1 \right){\left( {99} \right)^{50}} + {\left( {100} \right)^{50}}$
$\left( 2 \right){\left( {101} \right)^{50}}$
Now according to Binomial Theorem the expansion of \[{\left( {x + a} \right)^n}\] is given as
$ \Rightarrow {\left( {x + a} \right)^n} = 1.{x^n}.{a^0} + n.{x^{n - 1}}.{a^1} + \dfrac{{n\left( {n - 1} \right)}}{{2!}}.{x^{n - 2}}.{a^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}.{x^{n - 3}}.{a^3} + .....................$
Therefore ${\left( {101} \right)^{50}} = {\left( {100 + 1} \right)^{50}}$ so expand it according to above property we have,
$ \Rightarrow {\left( {100 + 1} \right)^{50}} = 1.{\left( {100} \right)^{50}}{.1^0} + 50.{\left( {100} \right)^{49}}{.1^1} + \dfrac{{50\left( {49} \right)}}{{2!}}.{\left( {100} \right)^{48}}{.1^2} + \dfrac{{50\left( {49} \right)\left( {48} \right)}}{{3!}}.{\left( {100} \right)^{47}}{.1^3} + ....{\text{ }}.........\left( 1 \right)$
Now ${\left( {99} \right)^{50}} = {\left( {100 - 1} \right)^{50}}$ so expand it according to above property we have,
$ \Rightarrow {\left( {100 - 1} \right)^{50}} = 1.{\left( {100} \right)^{50}}.{\left( { - 1} \right)^0} + 50.{\left( {100} \right)^{49}}.{\left( { - 1} \right)^1} + \dfrac{{50\left( {49} \right)}}{{2!}}.{\left( {100} \right)^{48}}.{\left( { - 1} \right)^2} + \dfrac{{50\left( {49} \right)\left( {48} \right)}}{{3!}}.{\left( {100} \right)^{47}}.{\left( { - 1} \right)^3} + ........$
$ \Rightarrow {\left( {100 - 1} \right)^{50}} = 1.{\left( {100} \right)^{50}}{.1^0} - 50.{\left( {100} \right)^{49}}{.1^1} + \dfrac{{50\left( {49} \right)}}{{2!}}.{\left( {100} \right)^{48}}{.1^2} - \dfrac{{50\left( {49} \right)\left( {48} \right)}}{{3!}}.{\left( {100} \right)^{47}}{.1^3} + .......{\text{ }}......\left( 2 \right)$
Now subtract equation (2) from equation (1) we have,
${\left( {100 + 1} \right)^{50}} = 1.{\left( {100} \right)^{50}}{.1^0} + 50.{\left( {100} \right)^{49}}{.1^1} + \dfrac{{50\left( {49} \right)}}{{2!}}.{\left( {100} \right)^{48}}{.1^2} + \dfrac{{50\left( {49} \right)\left( {48} \right)}}{{3!}}.{\left( {100} \right)^{47}}{.1^3} + ....$
${\left( {100 - 1} \right)^{50}} = 1.{\left( {100} \right)^{50}}{.1^0} - 50.{\left( {100} \right)^{49}}{.1^1} + \dfrac{{50\left( {49} \right)}}{{2!}}.{\left( {100} \right)^{48}}{.1^2} - \dfrac{{50\left( {49} \right)\left( {48} \right)}}{{3!}}.{\left( {100} \right)^{47}}{.1^3} + .......$
$ \Rightarrow {\left( {101} \right)^{50}} - {\left( {99} \right)^{50}} = 2\left[ {\left( {50} \right){{\left( {100} \right)}^{49}} + \dfrac{{50\left( {49} \right)\left( {48} \right)}}{{3!}}{{\left( {100} \right)}^{47}} + ..........} \right]$
Multiply by 2 inside the R.H.S we have,
$ \Rightarrow {\left( {101} \right)^{50}} - {\left( {99} \right)^{50}} = \left[ {\left( {100} \right){{\left( {100} \right)}^{49}} + \dfrac{{100\left( {49} \right)\left( {48} \right)}}{{3!}}{{\left( {100} \right)}^{47}} + ..........} \right]$
$ \Rightarrow {\left( {101} \right)^{50}} - {\left( {99} \right)^{50}} = \left[ {{{\left( {100} \right)}^{50}} + \dfrac{{100\left( {49} \right)\left( {48} \right)}}{{3!}}{{\left( {100} \right)}^{47}} + ..........} \right]$
Now as we see that the R.H.S part of the above equation is greater than ${\left( {100} \right)^{50}}$ as the first term of the R.H.S part is ${\left( {100} \right)^{50}}$ and the remaining term is all in positive sign therefore,
$ \Rightarrow {\left( {101} \right)^{50}} - {\left( {99} \right)^{50}} > {\left( {100} \right)^{50}}$
$ \Rightarrow {\left( {101} \right)^{50}} > {\left( {100} \right)^{50}} + {\left( {99} \right)^{50}}$
So ${\left( {101} \right)^{50}}$ is larger.
So this is the required answer.
Note: This type of problem is one its kind, usage of binomial expansion along with the general mathematics is only helpful to solve problems of this type. It is advisable to have a good grasp over the direct formula of the binomial expansion.
Complete step-by-step answer:
We have to find out which one is larger
$\left( 1 \right){\left( {99} \right)^{50}} + {\left( {100} \right)^{50}}$
$\left( 2 \right){\left( {101} \right)^{50}}$
Now according to Binomial Theorem the expansion of \[{\left( {x + a} \right)^n}\] is given as
$ \Rightarrow {\left( {x + a} \right)^n} = 1.{x^n}.{a^0} + n.{x^{n - 1}}.{a^1} + \dfrac{{n\left( {n - 1} \right)}}{{2!}}.{x^{n - 2}}.{a^2} + \dfrac{{n\left( {n - 1} \right)\left( {n - 2} \right)}}{{3!}}.{x^{n - 3}}.{a^3} + .....................$
Therefore ${\left( {101} \right)^{50}} = {\left( {100 + 1} \right)^{50}}$ so expand it according to above property we have,
$ \Rightarrow {\left( {100 + 1} \right)^{50}} = 1.{\left( {100} \right)^{50}}{.1^0} + 50.{\left( {100} \right)^{49}}{.1^1} + \dfrac{{50\left( {49} \right)}}{{2!}}.{\left( {100} \right)^{48}}{.1^2} + \dfrac{{50\left( {49} \right)\left( {48} \right)}}{{3!}}.{\left( {100} \right)^{47}}{.1^3} + ....{\text{ }}.........\left( 1 \right)$
Now ${\left( {99} \right)^{50}} = {\left( {100 - 1} \right)^{50}}$ so expand it according to above property we have,
$ \Rightarrow {\left( {100 - 1} \right)^{50}} = 1.{\left( {100} \right)^{50}}.{\left( { - 1} \right)^0} + 50.{\left( {100} \right)^{49}}.{\left( { - 1} \right)^1} + \dfrac{{50\left( {49} \right)}}{{2!}}.{\left( {100} \right)^{48}}.{\left( { - 1} \right)^2} + \dfrac{{50\left( {49} \right)\left( {48} \right)}}{{3!}}.{\left( {100} \right)^{47}}.{\left( { - 1} \right)^3} + ........$
$ \Rightarrow {\left( {100 - 1} \right)^{50}} = 1.{\left( {100} \right)^{50}}{.1^0} - 50.{\left( {100} \right)^{49}}{.1^1} + \dfrac{{50\left( {49} \right)}}{{2!}}.{\left( {100} \right)^{48}}{.1^2} - \dfrac{{50\left( {49} \right)\left( {48} \right)}}{{3!}}.{\left( {100} \right)^{47}}{.1^3} + .......{\text{ }}......\left( 2 \right)$
Now subtract equation (2) from equation (1) we have,
${\left( {100 + 1} \right)^{50}} = 1.{\left( {100} \right)^{50}}{.1^0} + 50.{\left( {100} \right)^{49}}{.1^1} + \dfrac{{50\left( {49} \right)}}{{2!}}.{\left( {100} \right)^{48}}{.1^2} + \dfrac{{50\left( {49} \right)\left( {48} \right)}}{{3!}}.{\left( {100} \right)^{47}}{.1^3} + ....$
${\left( {100 - 1} \right)^{50}} = 1.{\left( {100} \right)^{50}}{.1^0} - 50.{\left( {100} \right)^{49}}{.1^1} + \dfrac{{50\left( {49} \right)}}{{2!}}.{\left( {100} \right)^{48}}{.1^2} - \dfrac{{50\left( {49} \right)\left( {48} \right)}}{{3!}}.{\left( {100} \right)^{47}}{.1^3} + .......$
$ \Rightarrow {\left( {101} \right)^{50}} - {\left( {99} \right)^{50}} = 2\left[ {\left( {50} \right){{\left( {100} \right)}^{49}} + \dfrac{{50\left( {49} \right)\left( {48} \right)}}{{3!}}{{\left( {100} \right)}^{47}} + ..........} \right]$
Multiply by 2 inside the R.H.S we have,
$ \Rightarrow {\left( {101} \right)^{50}} - {\left( {99} \right)^{50}} = \left[ {\left( {100} \right){{\left( {100} \right)}^{49}} + \dfrac{{100\left( {49} \right)\left( {48} \right)}}{{3!}}{{\left( {100} \right)}^{47}} + ..........} \right]$
$ \Rightarrow {\left( {101} \right)^{50}} - {\left( {99} \right)^{50}} = \left[ {{{\left( {100} \right)}^{50}} + \dfrac{{100\left( {49} \right)\left( {48} \right)}}{{3!}}{{\left( {100} \right)}^{47}} + ..........} \right]$
Now as we see that the R.H.S part of the above equation is greater than ${\left( {100} \right)^{50}}$ as the first term of the R.H.S part is ${\left( {100} \right)^{50}}$ and the remaining term is all in positive sign therefore,
$ \Rightarrow {\left( {101} \right)^{50}} - {\left( {99} \right)^{50}} > {\left( {100} \right)^{50}}$
$ \Rightarrow {\left( {101} \right)^{50}} > {\left( {100} \right)^{50}} + {\left( {99} \right)^{50}}$
So ${\left( {101} \right)^{50}}$ is larger.
So this is the required answer.
Note: This type of problem is one its kind, usage of binomial expansion along with the general mathematics is only helpful to solve problems of this type. It is advisable to have a good grasp over the direct formula of the binomial expansion.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

