
What is the formula of \[{(a - b)^3}\] ?
Answer
498k+ views
Hint: We can derive the formula with or without using a standard formula that is available. Even though we have a standard formula for \[{(a - b)^3}\] we can derive them by splitting them into its factors. Then multiplying those factors will give us the formula for \[{(a - b)^3}\] . We can also use any other standards formula to expand the factors.
Formula: The formula that we will be using for this is:
\[{(a - b)^2} = {a^2} + {b^2} - 2ab\]
\[{a^3} = a \times {a^2} = a \times a \times a\]
Complete step by step answer:
It is given that \[{(a - b)^3}\] we aim to find the formula for this term. First, we will split the term \[{(a - b)^3}\] into its factors.
Let us split \[{(a - b)^3}\] into its factors. Using the formula \[{a^3} = a \times {a^2} = a \times a \times a\] let’s split the given term by taking \[a\] as \[(a - b)\] .
\[{(a - b)^3} = (a - b) \times {(a - b)^2}\]
Now we can use the formula \[{(a - b)^2} = {a^2} + {b^2} - 2ab\] to split the term \[{(a - b)^2}\] or we can just split that like \[{a^2} = a \times a\] by taking \[a\] as \[(a - b)\] .
Let us solve the problem in both ways.
First, let us use the formula \[{(a - b)^2} = {a^2} + {b^2} - 2ab\] to split the term \[{(a - b)^2}\] .
\[{(a - b)^3} = (a - b) \times {(a - b)^2} = (a - b) \times ({a^2} + {b^2} - 2ab)\]
Now let us multiply the factors \[(a - b)\] & \[({a^2} + {b^2} - 2ab)\] term by term.
\[(a - b) \times ({a^2} + {b^2} - 2ab) = {a^3} + a{b^2} - 2{a^2}b - {a^2}b - {b^3} + 2a{b^2}\]
Now let us group the like terms.
\[(a - b) \times ({a^2} + {b^2} - 2ab) = {a^3} + (a{b^2} + 2a{b^2}) - (2{a^2}b + {a^2}b) - {b^3}\]
On simplifying this we get
\[(a - b) \times ({a^2} + {b^2} - 2ab) = {a^3} + (3a{b^2}) - (3{a^2}b) - {b^3}\]
Now let’s rearrange the above expression.
\[(a - b) \times ({a^2} + {b^2} - 2ab) = {a^3} - {b^3} + (3a{b^2} - 3{a^2}b)\]
Let’s take the term \[ - 3ab\] commonly out of the last two terms.
\[(a - b) \times ({a^2} + {b^2} - 2ab) = {a^3} - {b^3} - 3ab(a - b)\]
Therefore, we get \[{(a - b)^3} = {a^3} - {b^3} - 3ab(a - b)\] .
Note: We can see that the formula can be derived by two methods: with standard formula or without standard formula. We will get the same answer for both methods.
Now let’s derive the formula without using the standard formula.
Consider the given term \[{(a - b)^3}\] .
Let’s split them into its factors using the formula \[{a^3} = a \times {a^2} = a \times a \times a\] .
\[{(a - b)^3} = (a - b) \times (a - b) \times (a - b)\]
Now let’s multiply the first two factors.
\[{(a - b)^3} = ({a^2} - ab - ab + {b^2}) \times (a - b)\]
On simplifying this we get
\[{(a - b)^3} = ({a^2} + {b^2} - 2ab) \times (a - b)\]
Now let’s multiply the third term to the resultant.
\[{(a - b)^3} = {a^3} - {a^2}b + a{b^2} - {b^3} - 2{a^2}b + 2a{b^2}\]
Let us group the terms like.
\[{(a - b)^3} = {a^3} - ({a^2}b + 2{a^2}b) + (a{b^2} + 2a{b^2}) - {b^3}\]
On simplifying this we get
\[{(a - b)^3} = {a^3} - (3{a^2}b) + (3a{b^2}) - {b^3}\]
Let us re-arrange the above expression.
\[{(a - b)^3} = {a^3} - {b^3} - 3{a^2}b + 3a{b^2}\]
Let’s take the term \[ - 3ab\] commonly out of the last two terms.
\[{(a - b)^3} = {a^3} - {b^3} - 3ab(a - b)\]
Thus, we got the same answer for both methods. Therefore, the formula for the given term \[{(a - b)^3}\] is \[{a^3} - {b^3} - 3ab(a - b)\] .
Formula: The formula that we will be using for this is:
\[{(a - b)^2} = {a^2} + {b^2} - 2ab\]
\[{a^3} = a \times {a^2} = a \times a \times a\]
Complete step by step answer:
It is given that \[{(a - b)^3}\] we aim to find the formula for this term. First, we will split the term \[{(a - b)^3}\] into its factors.
Let us split \[{(a - b)^3}\] into its factors. Using the formula \[{a^3} = a \times {a^2} = a \times a \times a\] let’s split the given term by taking \[a\] as \[(a - b)\] .
\[{(a - b)^3} = (a - b) \times {(a - b)^2}\]
Now we can use the formula \[{(a - b)^2} = {a^2} + {b^2} - 2ab\] to split the term \[{(a - b)^2}\] or we can just split that like \[{a^2} = a \times a\] by taking \[a\] as \[(a - b)\] .
Let us solve the problem in both ways.
First, let us use the formula \[{(a - b)^2} = {a^2} + {b^2} - 2ab\] to split the term \[{(a - b)^2}\] .
\[{(a - b)^3} = (a - b) \times {(a - b)^2} = (a - b) \times ({a^2} + {b^2} - 2ab)\]
Now let us multiply the factors \[(a - b)\] & \[({a^2} + {b^2} - 2ab)\] term by term.
\[(a - b) \times ({a^2} + {b^2} - 2ab) = {a^3} + a{b^2} - 2{a^2}b - {a^2}b - {b^3} + 2a{b^2}\]
Now let us group the like terms.
\[(a - b) \times ({a^2} + {b^2} - 2ab) = {a^3} + (a{b^2} + 2a{b^2}) - (2{a^2}b + {a^2}b) - {b^3}\]
On simplifying this we get
\[(a - b) \times ({a^2} + {b^2} - 2ab) = {a^3} + (3a{b^2}) - (3{a^2}b) - {b^3}\]
Now let’s rearrange the above expression.
\[(a - b) \times ({a^2} + {b^2} - 2ab) = {a^3} - {b^3} + (3a{b^2} - 3{a^2}b)\]
Let’s take the term \[ - 3ab\] commonly out of the last two terms.
\[(a - b) \times ({a^2} + {b^2} - 2ab) = {a^3} - {b^3} - 3ab(a - b)\]
Therefore, we get \[{(a - b)^3} = {a^3} - {b^3} - 3ab(a - b)\] .
Note: We can see that the formula can be derived by two methods: with standard formula or without standard formula. We will get the same answer for both methods.
Now let’s derive the formula without using the standard formula.
Consider the given term \[{(a - b)^3}\] .
Let’s split them into its factors using the formula \[{a^3} = a \times {a^2} = a \times a \times a\] .
\[{(a - b)^3} = (a - b) \times (a - b) \times (a - b)\]
Now let’s multiply the first two factors.
\[{(a - b)^3} = ({a^2} - ab - ab + {b^2}) \times (a - b)\]
On simplifying this we get
\[{(a - b)^3} = ({a^2} + {b^2} - 2ab) \times (a - b)\]
Now let’s multiply the third term to the resultant.
\[{(a - b)^3} = {a^3} - {a^2}b + a{b^2} - {b^3} - 2{a^2}b + 2a{b^2}\]
Let us group the terms like.
\[{(a - b)^3} = {a^3} - ({a^2}b + 2{a^2}b) + (a{b^2} + 2a{b^2}) - {b^3}\]
On simplifying this we get
\[{(a - b)^3} = {a^3} - (3{a^2}b) + (3a{b^2}) - {b^3}\]
Let us re-arrange the above expression.
\[{(a - b)^3} = {a^3} - {b^3} - 3{a^2}b + 3a{b^2}\]
Let’s take the term \[ - 3ab\] commonly out of the last two terms.
\[{(a - b)^3} = {a^3} - {b^3} - 3ab(a - b)\]
Thus, we got the same answer for both methods. Therefore, the formula for the given term \[{(a - b)^3}\] is \[{a^3} - {b^3} - 3ab(a - b)\] .
Recently Updated Pages
What steps should be taken for the conservation of class 10 biology CBSE

Distinguish between frequency polygon and frequency class 10 maths CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

The sulphur molecule S8 can be represented as a Cubical class 10 chemistry CBSE

Answer the following questions in about 60 words Give class 10 english CBSE

An integer is chosen at random between 1 and 100 Find class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

