
What is $\cos A-\cos B$?
Answer
573.6k+ views
Hint: We will split the values of angles $A$ and $B$ in a certain way. Then we will use trigonometric identities to expand the given expression. The trigonometric identities that we will use are $\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y$ and $\cos \left( x-y \right)=\cos x\cos y+\sin x\sin y$. Simplifying this modified expression, we will be able to find the value for the given expression.
Complete step-by-step answer:
We have to find the value for the expression $\cos A-\cos B$. Now, we can write angles $A$ and $B$ in the following manner,
$A=\dfrac{A+B}{2}+\dfrac{A-B}{2}$ and $B=\dfrac{A+B}{2}-\dfrac{A-B}{2}$.
Substituting these values in the given expression, we get
$\cos A-\cos B=\cos \left( \dfrac{A+B}{2}+\dfrac{A-B}{2} \right)-\cos \left( \dfrac{A+B}{2}-\dfrac{A-B}{2} \right)$
We know the following trigonometric identities,
$\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y$
$\cos \left( x-y \right)=\cos x\cos y+\sin x\sin y$
We can use these trigonometric identities to expand the terms on the right hand side of the above expression in the following manner,
$\cos \left( \dfrac{A+B}{2}+\dfrac{A-B}{2} \right)=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
$\cos \left( \dfrac{A+B}{2}-\dfrac{A-B}{2} \right)=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)+\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
So, now we have the following expression,
$\begin{align}
& \cos A-\cos B=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) \\
& -\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) \\
\end{align}$
Simplifying the above expression we get,
$\begin{align}
& \cos A-\cos B=-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) \\
& =-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)
\end{align}$
Hence, we get the final expression as $\cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$.
Note: The final expression is a formula that relates sum or difference to the product. The same method can be used to prove the remaining results of the sum and product identities. The identity for $\cos A+\cos B$ is given by $\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$. The identities for the sum or difference of sine functions and of tangent functions are similar to that of the cosine functions'.
Complete step-by-step answer:
We have to find the value for the expression $\cos A-\cos B$. Now, we can write angles $A$ and $B$ in the following manner,
$A=\dfrac{A+B}{2}+\dfrac{A-B}{2}$ and $B=\dfrac{A+B}{2}-\dfrac{A-B}{2}$.
Substituting these values in the given expression, we get
$\cos A-\cos B=\cos \left( \dfrac{A+B}{2}+\dfrac{A-B}{2} \right)-\cos \left( \dfrac{A+B}{2}-\dfrac{A-B}{2} \right)$
We know the following trigonometric identities,
$\cos \left( x+y \right)=\cos x\cos y-\sin x\sin y$
$\cos \left( x-y \right)=\cos x\cos y+\sin x\sin y$
We can use these trigonometric identities to expand the terms on the right hand side of the above expression in the following manner,
$\cos \left( \dfrac{A+B}{2}+\dfrac{A-B}{2} \right)=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
$\cos \left( \dfrac{A+B}{2}-\dfrac{A-B}{2} \right)=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)+\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$
So, now we have the following expression,
$\begin{align}
& \cos A-\cos B=\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) \\
& -\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) \\
\end{align}$
Simplifying the above expression we get,
$\begin{align}
& \cos A-\cos B=-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)-\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right) \\
& =-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)
\end{align}$
Hence, we get the final expression as $\cos A-\cos B=-2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{A-B}{2} \right)$.
Note: The final expression is a formula that relates sum or difference to the product. The same method can be used to prove the remaining results of the sum and product identities. The identity for $\cos A+\cos B$ is given by $\cos A+\cos B=2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)$. The identities for the sum or difference of sine functions and of tangent functions are similar to that of the cosine functions'.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

How is gypsum formed class 10 chemistry CBSE

If the line 3x + 4y 24 0 intersects the xaxis at t-class-10-maths-CBSE

Sugar present in DNA is A Heptose B Hexone C Tetrose class 10 biology CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Indias first jute mill was established in 1854 in A class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

