
What is a pooled variance?
Answer
516.6k+ views
Hint: In this problem, we are going to see about pooled variance. We should know in statistics, pooled variance is the method of estimating variance of several different populations when the mean of each population may differ, but one may assume that the variance of each population is the same. The numerical estimate resulting from the use of this method is also called the pooled variance. We can now see it with its formula.
Complete step by step answer:
Here we can see about pooled variance.
We should know in statistics, pooled variance is the method of estimating variance of several different populations when the mean of each population may differ, but one may assume that the variance of each population is the same. The numerical estimate resulting from the use of this method is also called the pooled variance.
It is also called combined variance, composite variance and overall variance.
The formula of pooled variance is,
\[s_{i}^{2}=\dfrac{1}{{{n}_{i}}-1}\sum\limits_{j=1}^{{{n}_{i}}}{{{\left( {{y}_{j}}-{{\overline{y}}_{i}} \right)}^{2}}}\]
Where,
\[s_{i}^{2}\] is sample variance.
\[{{n}_{i}}\] is sample size.
\[{{y}_{i}}\] is \[{{i}^{th}}\] observation.
\[{{y}_{j}}\] sample means of group j.
Note: We should know in statistics, pooled variance is the method of estimating variance of several different populations when the mean of each population may differ, but one may assume that the variance of each population is the same. The numerical estimate resulting from the use of this method is also called the pooled variance.
Complete step by step answer:
Here we can see about pooled variance.
We should know in statistics, pooled variance is the method of estimating variance of several different populations when the mean of each population may differ, but one may assume that the variance of each population is the same. The numerical estimate resulting from the use of this method is also called the pooled variance.
It is also called combined variance, composite variance and overall variance.
The formula of pooled variance is,
\[s_{i}^{2}=\dfrac{1}{{{n}_{i}}-1}\sum\limits_{j=1}^{{{n}_{i}}}{{{\left( {{y}_{j}}-{{\overline{y}}_{i}} \right)}^{2}}}\]
Where,
\[s_{i}^{2}\] is sample variance.
\[{{n}_{i}}\] is sample size.
\[{{y}_{i}}\] is \[{{i}^{th}}\] observation.
\[{{y}_{j}}\] sample means of group j.
Note: We should know in statistics, pooled variance is the method of estimating variance of several different populations when the mean of each population may differ, but one may assume that the variance of each population is the same. The numerical estimate resulting from the use of this method is also called the pooled variance.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

