
we have an expression as ${\log _{12}}27 = a$. So, find the value of ${\log _6}16$ in ‘$a$’ form?
Answer
500.7k+ views
Hint: We will use the logarithmic change of base formula for ${\log _{12}}27 = a$ and ${\log _6}16$ . Using change of base formula for ${\log _{12}}27 = a$ , we will find the log of a number with changed base in terms of ‘$a$’ and substitute in ${\log _6}16$ to get the final answer.
Complete step-by-step solution:
Given that: ${\log _{12}}27 = a$
The change of base formula states that,
${\log _q}p = \dfrac{{{{\log }_r}p}}{{{{\log }_r}q}}$
By using this change of base formula, we will modify the equation ${\log _{12}}27 = a$ to base $10$ .
${\log _{12}}27 = a$
${\log _{12}}27 = \dfrac{{{{\log }_{10}}27}}{{{{\log }_{10}}12}} = a$
We can write $27$ as $3 \times 3 \times 3$ and $12$ as $2 \times 2 \times 3$ ,
$\therefore {\log _{12}}27 = \dfrac{{{{\log }_{10}}3 \times 3 \times 3}}{{{{\log }_{10}}2 \times 2 \times 3}} = a$
Substituting $3 \times 3 \times 3 = {3^3}$ and $2 \times 2 \times 3 = {2^2} \times 3$in the above equation,
$\therefore {\log _{12}}27 = \dfrac{{{{\log }_{10}}{3^3}}}{{{{\log }_{10}}({2^2} \times 3)}} = a$
By using the basic logarithmic formula which states that,
${\log _n}(a \times b) = {\log _n}a + {\log _n}b$
We can write ${\log _{12}}27 = \dfrac{{{{\log }_{10}}{3^3}}}{{{{\log }_{10}}({2^2} \times 3)}} = a$ as,
${\log _{12}}27 = \dfrac{{{{\log }_{10}}{3^3}}}{{{{\log }_{10}}{2^2} + {{\log }_{10}}3}} = a$
By using the basic logarithmic formula which states that,
${\log _b}{a^n} = n{\log _b}a$
We write ${\log _{12}}27 = \dfrac{{{{\log }_{10}}{3^3}}}{{{{\log }_{10}}{2^2} + {{\log }_{10}}3}} = a$ as,
$\Rightarrow {\log _{12}}27 = \dfrac{{3{{\log }_{10}}3}}{{2{{\log }_{10}}2 + {{\log }_{10}}3}} = a$
$\Rightarrow \dfrac{{3{{\log }_{10}}3}}{{2{{\log }_{10}}2 + {{\log }_{10}}3}} = a$
Rearranging the terms in the above equation as,
$\dfrac{{2{{\log }_{10}}2 + {{\log }_{10}}3}}{{3{{\log }_{10}}3}} = \dfrac{1}{a}$
Splitting the addition term in the above equation,
$\dfrac{{2{{\log }_{10}}2}}{{3{{\log }_{10}}3}} + \dfrac{{{{\log }_{10}}3}}{{3{{\log }_{10}}3}} = \dfrac{1}{a}$
Solving this equation, we get,
$\dfrac{{2{{\log }_{10}}2}}{{3{{\log }_{10}}3}} + \dfrac{1}{3} = \dfrac{1}{a}$
Taking the $\dfrac{1}{3}$ term to the right-hand side,
$\dfrac{{2{{\log }_{10}}2}}{{3{{\log }_{10}}3}} = \dfrac{1}{a} - \dfrac{1}{3}$
We can write this equation as ,
$\dfrac{2}{3} \times \dfrac{{{{\log }_{10}}2}}{{{{\log }_{10}}3}} = \dfrac{{3 - a}}{{a \times 3}}$
Taking the $\dfrac{2}{3}$ term to the right-hand side,
$\dfrac{{{{\log }_{10}}2}}{{{{\log }_{10}}3}} = \dfrac{3}{2} \times \dfrac{{3 - a}}{{a \times 3}}$
$\Rightarrow \dfrac{{{{\log }_{10}}2}}{{{{\log }_{10}}3}} = \dfrac{{3(3 - a)}}{{2 \times a \times 3}}$
$\Rightarrow \dfrac{{{{\log }_{10}}2}}{{{{\log }_{10}}3}} = \dfrac{{(3 - a)}}{{2a}}$
$\Rightarrow \dfrac{{2a}}{{(3 - a)}}{\log _{10}}2 = {\log _{10}}3$ ….. (1)
Now consider,
${\log _6}16$
Applying the same change of base formula,
${\log _q}p = \dfrac{{{{\log }_r}p}}{{{{\log }_r}q}}$
${\log _6}16 = \dfrac{{{{\log }_{10}}16}}{{{{\log }_{10}}6}}$
We can write $16 = 2 \times 2 \times 2 \times 2$ and $6 = 2 \times 3$ ,
${\log _6}16 = \dfrac{{{{\log }_{10}}2 \times 2 \times 2 \times 2}}{{{{\log }_{10}}2 \times 3}}$
Substituting $2 \times 2 \times 2 \times 2 = {2^4}$,
${\log _6}16 = \dfrac{{{{\log }_{10}}{2^4}}}{{{{\log }_{10}}2 \times 3}}$
By using the basic logarithmic formula which states that,
${\log _n}(a \times b) = {\log _n}a + {\log _n}b$
We can write ${\log _6}16 = \dfrac{{{{\log }_{10}}{2^4}}}{{{{\log }_{10}}2 \times 3}}$ as,
${\log _6}16 = \dfrac{{{{\log }_{10}}{2^4}}}{{{{\log }_{10}}2 + {{\log }_{10}}3}}$
By using the basic logarithmic formula which states that,
${\log _b}{a^n} = n{\log _b}a$
${\log _6}16 = \dfrac{{4{{\log }_{10}}2}}{{{{\log }_{10}}2 + {{\log }_{10}}3}}$
Substituting the value of ${\log _{10}}3$ from equation (1),
${\log _6}16 = \dfrac{{4{{\log }_{10}}2}}{{{{\log }_{10}}2 + \dfrac{{2a}}{{(3 - a)}}{{\log }_{10}}2}}$
Taking ${\log _{10}}2$ common from the denominator,
${\log _6}16 = \dfrac{{4{{\log }_{10}}2}}{{{{\log }_{10}}2\left( {1 + \dfrac{{2a}}{{(3 - a)}}} \right)}}$
Cancelling out ${\log _{10}}2$ from numerator and denominator we get,
${\log _6}16 = \dfrac{4}{{\left( {1 + \dfrac{{2a}}{{(3 - a)}}} \right)}}$
Simplifying this equation further,
${\log _6}16 = \dfrac{4}{{\left( {\dfrac{{3 - a + 2a}}{{(3 - a)}}} \right)}}$
$\Rightarrow {\log _6}16 = \dfrac{{4(3 - a)}}{{3 - a + 2a}}$
$\Rightarrow {\log _6}16 = \dfrac{{4(3 - a)}}{{(3 + a)}}$
The value of ${\log _6}16$ in ‘$a$’ form is ${\log _6}16 = \dfrac{{4(3 - a)}}{{(3 + a)}}$ .
Note: The change of base method allows rewriting the logarithm in phrases of any other base log. change of base formulation is used within the evaluation of log and has every other base than $10$.
Complete step-by-step solution:
Given that: ${\log _{12}}27 = a$
The change of base formula states that,
${\log _q}p = \dfrac{{{{\log }_r}p}}{{{{\log }_r}q}}$
By using this change of base formula, we will modify the equation ${\log _{12}}27 = a$ to base $10$ .
${\log _{12}}27 = a$
${\log _{12}}27 = \dfrac{{{{\log }_{10}}27}}{{{{\log }_{10}}12}} = a$
We can write $27$ as $3 \times 3 \times 3$ and $12$ as $2 \times 2 \times 3$ ,
$\therefore {\log _{12}}27 = \dfrac{{{{\log }_{10}}3 \times 3 \times 3}}{{{{\log }_{10}}2 \times 2 \times 3}} = a$
Substituting $3 \times 3 \times 3 = {3^3}$ and $2 \times 2 \times 3 = {2^2} \times 3$in the above equation,
$\therefore {\log _{12}}27 = \dfrac{{{{\log }_{10}}{3^3}}}{{{{\log }_{10}}({2^2} \times 3)}} = a$
By using the basic logarithmic formula which states that,
${\log _n}(a \times b) = {\log _n}a + {\log _n}b$
We can write ${\log _{12}}27 = \dfrac{{{{\log }_{10}}{3^3}}}{{{{\log }_{10}}({2^2} \times 3)}} = a$ as,
${\log _{12}}27 = \dfrac{{{{\log }_{10}}{3^3}}}{{{{\log }_{10}}{2^2} + {{\log }_{10}}3}} = a$
By using the basic logarithmic formula which states that,
${\log _b}{a^n} = n{\log _b}a$
We write ${\log _{12}}27 = \dfrac{{{{\log }_{10}}{3^3}}}{{{{\log }_{10}}{2^2} + {{\log }_{10}}3}} = a$ as,
$\Rightarrow {\log _{12}}27 = \dfrac{{3{{\log }_{10}}3}}{{2{{\log }_{10}}2 + {{\log }_{10}}3}} = a$
$\Rightarrow \dfrac{{3{{\log }_{10}}3}}{{2{{\log }_{10}}2 + {{\log }_{10}}3}} = a$
Rearranging the terms in the above equation as,
$\dfrac{{2{{\log }_{10}}2 + {{\log }_{10}}3}}{{3{{\log }_{10}}3}} = \dfrac{1}{a}$
Splitting the addition term in the above equation,
$\dfrac{{2{{\log }_{10}}2}}{{3{{\log }_{10}}3}} + \dfrac{{{{\log }_{10}}3}}{{3{{\log }_{10}}3}} = \dfrac{1}{a}$
Solving this equation, we get,
$\dfrac{{2{{\log }_{10}}2}}{{3{{\log }_{10}}3}} + \dfrac{1}{3} = \dfrac{1}{a}$
Taking the $\dfrac{1}{3}$ term to the right-hand side,
$\dfrac{{2{{\log }_{10}}2}}{{3{{\log }_{10}}3}} = \dfrac{1}{a} - \dfrac{1}{3}$
We can write this equation as ,
$\dfrac{2}{3} \times \dfrac{{{{\log }_{10}}2}}{{{{\log }_{10}}3}} = \dfrac{{3 - a}}{{a \times 3}}$
Taking the $\dfrac{2}{3}$ term to the right-hand side,
$\dfrac{{{{\log }_{10}}2}}{{{{\log }_{10}}3}} = \dfrac{3}{2} \times \dfrac{{3 - a}}{{a \times 3}}$
$\Rightarrow \dfrac{{{{\log }_{10}}2}}{{{{\log }_{10}}3}} = \dfrac{{3(3 - a)}}{{2 \times a \times 3}}$
$\Rightarrow \dfrac{{{{\log }_{10}}2}}{{{{\log }_{10}}3}} = \dfrac{{(3 - a)}}{{2a}}$
$\Rightarrow \dfrac{{2a}}{{(3 - a)}}{\log _{10}}2 = {\log _{10}}3$ ….. (1)
Now consider,
${\log _6}16$
Applying the same change of base formula,
${\log _q}p = \dfrac{{{{\log }_r}p}}{{{{\log }_r}q}}$
${\log _6}16 = \dfrac{{{{\log }_{10}}16}}{{{{\log }_{10}}6}}$
We can write $16 = 2 \times 2 \times 2 \times 2$ and $6 = 2 \times 3$ ,
${\log _6}16 = \dfrac{{{{\log }_{10}}2 \times 2 \times 2 \times 2}}{{{{\log }_{10}}2 \times 3}}$
Substituting $2 \times 2 \times 2 \times 2 = {2^4}$,
${\log _6}16 = \dfrac{{{{\log }_{10}}{2^4}}}{{{{\log }_{10}}2 \times 3}}$
By using the basic logarithmic formula which states that,
${\log _n}(a \times b) = {\log _n}a + {\log _n}b$
We can write ${\log _6}16 = \dfrac{{{{\log }_{10}}{2^4}}}{{{{\log }_{10}}2 \times 3}}$ as,
${\log _6}16 = \dfrac{{{{\log }_{10}}{2^4}}}{{{{\log }_{10}}2 + {{\log }_{10}}3}}$
By using the basic logarithmic formula which states that,
${\log _b}{a^n} = n{\log _b}a$
${\log _6}16 = \dfrac{{4{{\log }_{10}}2}}{{{{\log }_{10}}2 + {{\log }_{10}}3}}$
Substituting the value of ${\log _{10}}3$ from equation (1),
${\log _6}16 = \dfrac{{4{{\log }_{10}}2}}{{{{\log }_{10}}2 + \dfrac{{2a}}{{(3 - a)}}{{\log }_{10}}2}}$
Taking ${\log _{10}}2$ common from the denominator,
${\log _6}16 = \dfrac{{4{{\log }_{10}}2}}{{{{\log }_{10}}2\left( {1 + \dfrac{{2a}}{{(3 - a)}}} \right)}}$
Cancelling out ${\log _{10}}2$ from numerator and denominator we get,
${\log _6}16 = \dfrac{4}{{\left( {1 + \dfrac{{2a}}{{(3 - a)}}} \right)}}$
Simplifying this equation further,
${\log _6}16 = \dfrac{4}{{\left( {\dfrac{{3 - a + 2a}}{{(3 - a)}}} \right)}}$
$\Rightarrow {\log _6}16 = \dfrac{{4(3 - a)}}{{3 - a + 2a}}$
$\Rightarrow {\log _6}16 = \dfrac{{4(3 - a)}}{{(3 + a)}}$
The value of ${\log _6}16$ in ‘$a$’ form is ${\log _6}16 = \dfrac{{4(3 - a)}}{{(3 + a)}}$ .
Note: The change of base method allows rewriting the logarithm in phrases of any other base log. change of base formulation is used within the evaluation of log and has every other base than $10$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

