
Volume of Parallelepiped formed by vectors $\overrightarrow{a}$ $\times $ $\overrightarrow{b}$ , $\overrightarrow{b}$$\times $ $\overrightarrow{c}$ and $\overrightarrow{c}$ $\times $ $\overrightarrow{a}$ is 36 sq. units.
Prove that
\[A)\,\,\,\,\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]=6\]
B) Volume of tetrahedron formed by vectors $\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$ is 1
$C)\,\,\,\left[ \overrightarrow{a}+\overrightarrow{b}\overrightarrow{b}+\overrightarrow{c}\overrightarrow{c}+\overrightarrow{a} \right]=12$
D) Differences between vectors are coplanar.
Answer
561.9k+ views
Hint: Formula for finding the volume of a parallelepiped is [$\overrightarrow{a}$ $\times $ $\overrightarrow{b}$ $\overrightarrow{b}$$\times $ $\overrightarrow{c}$ $\overrightarrow{c}$ $\times $ $\overrightarrow{a}$ ]. We can equate the given value of volume with the above formula and through that we can the value of [$\overrightarrow{a}$$\overrightarrow{b}$$\overrightarrow{c}$] as it is the square root of volume of parallelepiped.
Complete step-by-step solution:
Given Volume of Parallelepiped formed by vectors $\overrightarrow{a}$ $\times $ $\overrightarrow{b}$ , $\overrightarrow{b}$$\times $ $\overrightarrow{c}$ and $\overrightarrow{c}$ $\times $ $\overrightarrow{a}$ is 36 sq. units.
Therefore
[$\overrightarrow{a}$$\times $ $\overrightarrow{b}$ $\overrightarrow{b}$$\times $ $\overrightarrow{c}$ $\overrightarrow{c}$ $\times $ $\overrightarrow{a}$ ] = 36
We know that one of the property of box product is [$\overrightarrow{a}$ $\times $ $\overrightarrow{b}$ $\overrightarrow{b}$$\times $ $\overrightarrow{c}$ $\overrightarrow{c}$ $\times $ $\overrightarrow{a}$ ] = ${{\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]}^{2}}$
By this we can say that [$\overrightarrow{a}$$\overrightarrow{b}$$\overrightarrow{c}$] = 6
Hence the statement (a) is proved
Now let us move to the next statement
We know that Volume of tetrahedron formed by vectors $\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$ is $\dfrac{1}{6}$ [$\overrightarrow{a}$$\overrightarrow{b}$$\overrightarrow{c}$]
Therefore , The Volume of tetrahedron formed by vectors $\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$ = $\dfrac{1}{6}$ [$\overrightarrow{a}$$\overrightarrow{b}$$\overrightarrow{c}$] = $\dfrac{1}{6}$ ( 6 ) = 1
The Volume of tetrahedron formed by vectors $\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$ = 1
Hence the statement (b) is proved.
Now solving the third statement
c) [ $\overrightarrow{a}$ + $\overrightarrow{b}$ $\overrightarrow{b}$ + $\overrightarrow{c}$ $\overrightarrow{c}$ + $\overrightarrow{a}$ ]
We know that [ $\overrightarrow{a}$ + $\overrightarrow{b}$ $\overrightarrow{b}$ + $\overrightarrow{c}$ $\overrightarrow{c}$ + $\overrightarrow{a}$ ] = 2 [$\overrightarrow{a}$$\overrightarrow{b}$$\overrightarrow{c}$ ] = 2 ( 6 ) = 12
Hence the statement (c) is proved.
d) $\overrightarrow{a} -\overrightarrow{b}$, $\overrightarrow{b} -\overrightarrow{c}$ and $\overrightarrow{c} - \overrightarrow{a}$ can be said that they are coplanar only when
[ $\overrightarrow{a}-\overrightarrow{b}$ $\overrightarrow{b}-\overrightarrow{c}$ $\overrightarrow{c} - \overrightarrow{a}$ ] is equal to 0.
We also know that if the lines are $\overrightarrow{a} - \overrightarrow{b}$, $\overrightarrow{b} - \overrightarrow{c}$ and $\overrightarrow{c} - \overrightarrow{a}$ the determinant of those is 0, which implies they are coplanar.
Note: Learn all the formulae and properties of vectors. The main properties that are used are
1) [$\overrightarrow{a}$ $\times $ $\overrightarrow{b}$ $\overrightarrow{b}$$\times $ $\overrightarrow{c}$ $\overrightarrow{c}$ $\times $ $\overrightarrow{a}$ ] = ${{\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]}^{2}}$
2) [ $\overrightarrow{a}$ + $\overrightarrow{b}$ $\overrightarrow{b}$ + $\overrightarrow{c}$ $\overrightarrow{c}$ + $\overrightarrow{a}$ ] = 2 [$\overrightarrow{a}$$\overrightarrow{b}$$\overrightarrow{c}$ ] and
3) Volume of tetrahedron formed by vectors $\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$ is $\dfrac{1}{6}$ [$\overrightarrow{a}$$\overrightarrow{b}$$\overrightarrow{c}$]
Find the values of determinants without making calculation mistakes. Also learn the formulae of planes formed by the vectors and lines formed by the vectors.
Complete step-by-step solution:
Given Volume of Parallelepiped formed by vectors $\overrightarrow{a}$ $\times $ $\overrightarrow{b}$ , $\overrightarrow{b}$$\times $ $\overrightarrow{c}$ and $\overrightarrow{c}$ $\times $ $\overrightarrow{a}$ is 36 sq. units.
Therefore
[$\overrightarrow{a}$$\times $ $\overrightarrow{b}$ $\overrightarrow{b}$$\times $ $\overrightarrow{c}$ $\overrightarrow{c}$ $\times $ $\overrightarrow{a}$ ] = 36
We know that one of the property of box product is [$\overrightarrow{a}$ $\times $ $\overrightarrow{b}$ $\overrightarrow{b}$$\times $ $\overrightarrow{c}$ $\overrightarrow{c}$ $\times $ $\overrightarrow{a}$ ] = ${{\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]}^{2}}$
By this we can say that [$\overrightarrow{a}$$\overrightarrow{b}$$\overrightarrow{c}$] = 6
Hence the statement (a) is proved
Now let us move to the next statement
We know that Volume of tetrahedron formed by vectors $\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$ is $\dfrac{1}{6}$ [$\overrightarrow{a}$$\overrightarrow{b}$$\overrightarrow{c}$]
Therefore , The Volume of tetrahedron formed by vectors $\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$ = $\dfrac{1}{6}$ [$\overrightarrow{a}$$\overrightarrow{b}$$\overrightarrow{c}$] = $\dfrac{1}{6}$ ( 6 ) = 1
The Volume of tetrahedron formed by vectors $\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$ = 1
Hence the statement (b) is proved.
Now solving the third statement
c) [ $\overrightarrow{a}$ + $\overrightarrow{b}$ $\overrightarrow{b}$ + $\overrightarrow{c}$ $\overrightarrow{c}$ + $\overrightarrow{a}$ ]
We know that [ $\overrightarrow{a}$ + $\overrightarrow{b}$ $\overrightarrow{b}$ + $\overrightarrow{c}$ $\overrightarrow{c}$ + $\overrightarrow{a}$ ] = 2 [$\overrightarrow{a}$$\overrightarrow{b}$$\overrightarrow{c}$ ] = 2 ( 6 ) = 12
Hence the statement (c) is proved.
d) $\overrightarrow{a} -\overrightarrow{b}$, $\overrightarrow{b} -\overrightarrow{c}$ and $\overrightarrow{c} - \overrightarrow{a}$ can be said that they are coplanar only when
[ $\overrightarrow{a}-\overrightarrow{b}$ $\overrightarrow{b}-\overrightarrow{c}$ $\overrightarrow{c} - \overrightarrow{a}$ ] is equal to 0.
We also know that if the lines are $\overrightarrow{a} - \overrightarrow{b}$, $\overrightarrow{b} - \overrightarrow{c}$ and $\overrightarrow{c} - \overrightarrow{a}$ the determinant of those is 0, which implies they are coplanar.
Note: Learn all the formulae and properties of vectors. The main properties that are used are
1) [$\overrightarrow{a}$ $\times $ $\overrightarrow{b}$ $\overrightarrow{b}$$\times $ $\overrightarrow{c}$ $\overrightarrow{c}$ $\times $ $\overrightarrow{a}$ ] = ${{\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]}^{2}}$
2) [ $\overrightarrow{a}$ + $\overrightarrow{b}$ $\overrightarrow{b}$ + $\overrightarrow{c}$ $\overrightarrow{c}$ + $\overrightarrow{a}$ ] = 2 [$\overrightarrow{a}$$\overrightarrow{b}$$\overrightarrow{c}$ ] and
3) Volume of tetrahedron formed by vectors $\overrightarrow{a}$, $\overrightarrow{b}$, $\overrightarrow{c}$ is $\dfrac{1}{6}$ [$\overrightarrow{a}$$\overrightarrow{b}$$\overrightarrow{c}$]
Find the values of determinants without making calculation mistakes. Also learn the formulae of planes formed by the vectors and lines formed by the vectors.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Class 12 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Economics: Engaging Questions & Answers for Success

Trending doubts
How much time does it take to bleed after eating p class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

December 10th of 1948 is an important day in the history class 12 sst CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Give simple chemical tests to distinguish between the class 12 chemistry CBSE

