
How do you verify the identity\[\dfrac{\sin x+\sin y}{\cos x-\cos y}=-\cot \left( \dfrac{x-y}{2} \right)\]?
Answer
543.9k+ views
Hint: For the given question we are given a trigonometric equation to prove LHS=RHS. First step for doing this problem we have to take any of the parts of either LHS or RHS and then we should prove the other part. By applying the identities \[\begin{align}
& \sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) \\
& \cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right) \\
\end{align}\] our problem will come to end. By solving the remaining equation we can prove our equation.
Complete step by step answer:
For the given question we are given to verify the identity\[\dfrac{\sin x+\sin y}{\cos x-\cos y}=-\cot \left( \dfrac{x-y}{2} \right)\].
Now for verifying the above equation let us derive the RHS (right and side) part by the LHS (left hand side).
Let us consider the given equation as equation (1).
\[\dfrac{\sin x+\sin y}{\cos x-\cos y}=-\cot \left( \dfrac{x-y}{2} \right)............\left( 1 \right)\]
Now let us take the LHS part and derive, for that let us assume the equation as ‘S’.
\[\Rightarrow S=\dfrac{\sin x+\sin y}{\cos x-\cos y}=-\cot \left( \dfrac{x-y}{2} \right)\]
Let us consider the above equation as equation (2).
\[S=\dfrac{\sin x+\sin y}{\cos x-\cos y}=-\cot \left( \dfrac{x-y}{2} \right).........\left( 2 \right)\]
Taking LHS,
\[\Rightarrow S=\dfrac{\sin x+\sin y}{\cos x-\cos y}\]
Let us consider this as equation (3).
\[S=\dfrac{\sin x+\sin y}{\cos x-\cos y}...............\left( 3 \right)\]
As we know the identities\[\begin{align}
& \sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) \\
& \cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right) \\
\end{align}\]. Now let us consider these as identity ($I_{1}$) and identity ($I_{2}$).
\[\begin{align}
& \sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right).............\left( I_1 \right) \\
& \cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right).............\left( I_2 \right) \\
\end{align}\]
By applying the identity ($I_{1}$) to the numerator of equation (3) as well as Identity ($I_{2}$) to the denominator of equation (3), we get
\[\Rightarrow S=\dfrac{2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)}{2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)}\]
Let us consider the above equation as equation (3).
\[\Rightarrow S=\dfrac{2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)}{2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)}.........\left( 3 \right)\]
By simplifying the equation (3), we get
\[\Rightarrow S=\dfrac{\cos \left( \dfrac{A-B}{2} \right)}{\sin \left( \dfrac{B-A}{2} \right)}\]
Let us consider the above equation as equation (4).
\[\Rightarrow S=\dfrac{\cos \left( \dfrac{A-B}{2} \right)}{\sin \left( \dfrac{B-A}{2} \right)}...........\left( 4 \right)\]
As we know the identity\[\sin \left( -A \right)=-\sin \left( A \right)\]. Let us consider it as identity ($I_{3}$).
By observing the denominator of the equation we can see a term i.e.\[\sin \left( \dfrac{B-A}{2} \right)\]. Let us apply the identity ($I_{3}$) to the equation (4), we get
\[\Rightarrow S=-\dfrac{\cos \left( \dfrac{A-B}{2} \right)}{\sin \left( \dfrac{A-B}{2} \right)}\]
As we know the formula\[\dfrac{\cos a}{\sin a}=\cot a\]. By applying the formula to the above equation, we get
\[\Rightarrow S=-\cot \left( \dfrac{A-B}{2} \right)\]
Let us consider the above equation as equation (5).
\[\Rightarrow S=-\cot \left( \dfrac{A-B}{2} \right).........\left( 5 \right)\]
Therefore from equation (2) and equation (5) we can say that,
\[S=\dfrac{\sin x+\sin y}{\cos x-\cos y}=-\cot \left( \dfrac{x-y}{2} \right)\]
LHS=RHS
Hence, proved.
Note: We can solve the above problem by taking RHS as a reference also. Students should be aware of all trigonometric identities for solving the above problem. If students apply the \[\cos A-\cos B\] as \[2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{B-A}{2} \right)\] then whole problem will be wrong, so students should learn identities perfectly.
& \sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) \\
& \cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right) \\
\end{align}\] our problem will come to end. By solving the remaining equation we can prove our equation.
Complete step by step answer:
For the given question we are given to verify the identity\[\dfrac{\sin x+\sin y}{\cos x-\cos y}=-\cot \left( \dfrac{x-y}{2} \right)\].
Now for verifying the above equation let us derive the RHS (right and side) part by the LHS (left hand side).
Let us consider the given equation as equation (1).
\[\dfrac{\sin x+\sin y}{\cos x-\cos y}=-\cot \left( \dfrac{x-y}{2} \right)............\left( 1 \right)\]
Now let us take the LHS part and derive, for that let us assume the equation as ‘S’.
\[\Rightarrow S=\dfrac{\sin x+\sin y}{\cos x-\cos y}=-\cot \left( \dfrac{x-y}{2} \right)\]
Let us consider the above equation as equation (2).
\[S=\dfrac{\sin x+\sin y}{\cos x-\cos y}=-\cot \left( \dfrac{x-y}{2} \right).........\left( 2 \right)\]
Taking LHS,
\[\Rightarrow S=\dfrac{\sin x+\sin y}{\cos x-\cos y}\]
Let us consider this as equation (3).
\[S=\dfrac{\sin x+\sin y}{\cos x-\cos y}...............\left( 3 \right)\]
As we know the identities\[\begin{align}
& \sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right) \\
& \cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right) \\
\end{align}\]. Now let us consider these as identity ($I_{1}$) and identity ($I_{2}$).
\[\begin{align}
& \sin A+\sin B=2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right).............\left( I_1 \right) \\
& \cos A-\cos B=2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right).............\left( I_2 \right) \\
\end{align}\]
By applying the identity ($I_{1}$) to the numerator of equation (3) as well as Identity ($I_{2}$) to the denominator of equation (3), we get
\[\Rightarrow S=\dfrac{2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)}{2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)}\]
Let us consider the above equation as equation (3).
\[\Rightarrow S=\dfrac{2\sin \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{A-B}{2} \right)}{2\sin \left( \dfrac{A+B}{2} \right)\sin \left( \dfrac{B-A}{2} \right)}.........\left( 3 \right)\]
By simplifying the equation (3), we get
\[\Rightarrow S=\dfrac{\cos \left( \dfrac{A-B}{2} \right)}{\sin \left( \dfrac{B-A}{2} \right)}\]
Let us consider the above equation as equation (4).
\[\Rightarrow S=\dfrac{\cos \left( \dfrac{A-B}{2} \right)}{\sin \left( \dfrac{B-A}{2} \right)}...........\left( 4 \right)\]
As we know the identity\[\sin \left( -A \right)=-\sin \left( A \right)\]. Let us consider it as identity ($I_{3}$).
By observing the denominator of the equation we can see a term i.e.\[\sin \left( \dfrac{B-A}{2} \right)\]. Let us apply the identity ($I_{3}$) to the equation (4), we get
\[\Rightarrow S=-\dfrac{\cos \left( \dfrac{A-B}{2} \right)}{\sin \left( \dfrac{A-B}{2} \right)}\]
As we know the formula\[\dfrac{\cos a}{\sin a}=\cot a\]. By applying the formula to the above equation, we get
\[\Rightarrow S=-\cot \left( \dfrac{A-B}{2} \right)\]
Let us consider the above equation as equation (5).
\[\Rightarrow S=-\cot \left( \dfrac{A-B}{2} \right).........\left( 5 \right)\]
Therefore from equation (2) and equation (5) we can say that,
\[S=\dfrac{\sin x+\sin y}{\cos x-\cos y}=-\cot \left( \dfrac{x-y}{2} \right)\]
LHS=RHS
Hence, proved.
Note: We can solve the above problem by taking RHS as a reference also. Students should be aware of all trigonometric identities for solving the above problem. If students apply the \[\cos A-\cos B\] as \[2\cos \left( \dfrac{A+B}{2} \right)\cos \left( \dfrac{B-A}{2} \right)\] then whole problem will be wrong, so students should learn identities perfectly.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

