
How do you verify the identity $ \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} $ ?
Answer
533.1k+ views
Hint: We have to first use the associative law of ratio tan. We use the formula of $ \tan \left( a+b \right)=\dfrac{\tan a+\tan b}{\tan a-\tan b} $ to put the values of $ a=45,b=x $ . We can also verify it using arbitrary values as $ x=45 $ .
Complete step-by-step answer:
We have to verify the identity $ \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} $ by using the laws of associative angles.
We know that $ \tan \left( a+b \right)=\dfrac{\tan a+\tan b}{\tan a-\tan b} $ .
We have to replace the values in the formula to verify the identity $ \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} $ .
We replace it with $ a=45,b=x $ in $ \tan \left( a+b \right)=\dfrac{\tan a+\tan b}{\tan a-\tan b} $ .
Putting the values, we get $ \tan \left( 45+x \right)=\dfrac{\tan 45+\tan x}{\tan 45-\tan x} $ .
Now we know that the trigonometric ratio tan at the value of 45 gives $ \tan 45=1 $ .
We put the value and get
$ \tan \left( x+45 \right)=\dfrac{\tan 45+\tan x}{\tan 45-\tan x}=\dfrac{1+\tan x}{1-\tan x} $ .
Thus, proved that $ \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} $ .
We can also take an arbitrary value for $ x=45 $ .
We put the value in the expression of $ \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} $ .
The left-hand side of the expression becomes \[\tan \left( 45+45 \right)=\tan 90=\text{undefined}\].
The right-hand side of the expression becomes \[\dfrac{1+\tan x}{1-\tan x}=\dfrac{1+\tan 45}{1-\tan 45}=\dfrac{1+1}{1-1}=\text{undefined}\]
Thus, it is also verified.
Note: We need to remember that the additional value for the ratio tan comes from the associative rules of sin and cos. It is defined for any other values also.
Complete step-by-step answer:
We have to verify the identity $ \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} $ by using the laws of associative angles.
We know that $ \tan \left( a+b \right)=\dfrac{\tan a+\tan b}{\tan a-\tan b} $ .
We have to replace the values in the formula to verify the identity $ \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} $ .
We replace it with $ a=45,b=x $ in $ \tan \left( a+b \right)=\dfrac{\tan a+\tan b}{\tan a-\tan b} $ .
Putting the values, we get $ \tan \left( 45+x \right)=\dfrac{\tan 45+\tan x}{\tan 45-\tan x} $ .
Now we know that the trigonometric ratio tan at the value of 45 gives $ \tan 45=1 $ .
We put the value and get
$ \tan \left( x+45 \right)=\dfrac{\tan 45+\tan x}{\tan 45-\tan x}=\dfrac{1+\tan x}{1-\tan x} $ .
Thus, proved that $ \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} $ .
We can also take an arbitrary value for $ x=45 $ .
We put the value in the expression of $ \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} $ .
The left-hand side of the expression becomes \[\tan \left( 45+45 \right)=\tan 90=\text{undefined}\].
The right-hand side of the expression becomes \[\dfrac{1+\tan x}{1-\tan x}=\dfrac{1+\tan 45}{1-\tan 45}=\dfrac{1+1}{1-1}=\text{undefined}\]
Thus, it is also verified.
Note: We need to remember that the additional value for the ratio tan comes from the associative rules of sin and cos. It is defined for any other values also.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

