
How do you verify the identity $ \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} $ ?
Answer
522k+ views
Hint: We have to first use the associative law of ratio tan. We use the formula of $ \tan \left( a+b \right)=\dfrac{\tan a+\tan b}{\tan a-\tan b} $ to put the values of $ a=45,b=x $ . We can also verify it using arbitrary values as $ x=45 $ .
Complete step-by-step answer:
We have to verify the identity $ \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} $ by using the laws of associative angles.
We know that $ \tan \left( a+b \right)=\dfrac{\tan a+\tan b}{\tan a-\tan b} $ .
We have to replace the values in the formula to verify the identity $ \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} $ .
We replace it with $ a=45,b=x $ in $ \tan \left( a+b \right)=\dfrac{\tan a+\tan b}{\tan a-\tan b} $ .
Putting the values, we get $ \tan \left( 45+x \right)=\dfrac{\tan 45+\tan x}{\tan 45-\tan x} $ .
Now we know that the trigonometric ratio tan at the value of 45 gives $ \tan 45=1 $ .
We put the value and get
$ \tan \left( x+45 \right)=\dfrac{\tan 45+\tan x}{\tan 45-\tan x}=\dfrac{1+\tan x}{1-\tan x} $ .
Thus, proved that $ \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} $ .
We can also take an arbitrary value for $ x=45 $ .
We put the value in the expression of $ \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} $ .
The left-hand side of the expression becomes \[\tan \left( 45+45 \right)=\tan 90=\text{undefined}\].
The right-hand side of the expression becomes \[\dfrac{1+\tan x}{1-\tan x}=\dfrac{1+\tan 45}{1-\tan 45}=\dfrac{1+1}{1-1}=\text{undefined}\]
Thus, it is also verified.
Note: We need to remember that the additional value for the ratio tan comes from the associative rules of sin and cos. It is defined for any other values also.
Complete step-by-step answer:
We have to verify the identity $ \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} $ by using the laws of associative angles.
We know that $ \tan \left( a+b \right)=\dfrac{\tan a+\tan b}{\tan a-\tan b} $ .
We have to replace the values in the formula to verify the identity $ \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} $ .
We replace it with $ a=45,b=x $ in $ \tan \left( a+b \right)=\dfrac{\tan a+\tan b}{\tan a-\tan b} $ .
Putting the values, we get $ \tan \left( 45+x \right)=\dfrac{\tan 45+\tan x}{\tan 45-\tan x} $ .
Now we know that the trigonometric ratio tan at the value of 45 gives $ \tan 45=1 $ .
We put the value and get
$ \tan \left( x+45 \right)=\dfrac{\tan 45+\tan x}{\tan 45-\tan x}=\dfrac{1+\tan x}{1-\tan x} $ .
Thus, proved that $ \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} $ .
We can also take an arbitrary value for $ x=45 $ .
We put the value in the expression of $ \tan \left( x+45 \right)=\dfrac{1+\tan x}{1-\tan x} $ .
The left-hand side of the expression becomes \[\tan \left( 45+45 \right)=\tan 90=\text{undefined}\].
The right-hand side of the expression becomes \[\dfrac{1+\tan x}{1-\tan x}=\dfrac{1+\tan 45}{1-\tan 45}=\dfrac{1+1}{1-1}=\text{undefined}\]
Thus, it is also verified.
Note: We need to remember that the additional value for the ratio tan comes from the associative rules of sin and cos. It is defined for any other values also.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

