
How do you verify the identity \[\dfrac{{\tan x - \sec x + 1}}{{\tan x + \sec x - 1}} = \dfrac{{\cos x}}{{1 + \sin x}}\]?
Answer
493.5k+ views
Hint: We use trigonometric identities and ratios to solve this problem. We use some methods of simplifying algebraic expressions and verify the equation by equating the left-hand side and right-hand side of the given equation.
The formulas that we use in this problem are \[{\cos ^2}x + {\sin ^2}x = 1\] and \[{\sec ^2}x - {\tan ^2}x = 1\] which are standard trigonometric identities.
Complete step by step answer:
To solve this problem, consider the left-hand side of the equation and the right-hand side of the equation. And then we simplify the left-hand side of the equation and check whether we are getting the same expression present on the right-hand side as our result.
Now, in left hand side of equation, it is given as \[\dfrac{{\tan x - \sec x + 1}}{{\tan x + \sec x - 1}}\]
We know the identity \[{\sec ^2}x - {\tan ^2}x = 1\]
So, substitute the value of 1, in the denominator.
\[ \Rightarrow \dfrac{{\tan x - \sec x + 1}}{{\tan x + \sec x - ({{\sec }^2}x - {{\tan }^2}x)}}\]
We all know that, \[{a^2} - {b^2} = (a + b)(a - b)\]
So, we can write \[{\sec ^2}x - {\tan ^2}x = (\sec x + \tan x)(\sec x - \tan x)\]
So, we get,
\[ \Rightarrow \dfrac{{\tan x - \sec x + 1}}{{\tan x + \sec x - (\sec x + \tan x)(\sec x - \tan x)}}\]
Now take the term \[\sec x + \tan x\] common in the denominator.
\[ \Rightarrow \dfrac{{\tan x - \sec x + 1}}{{(\tan x + \sec x)(1 - (\sec x - \tan x))}}\]
\[ \Rightarrow \dfrac{{\tan x - \sec x + 1}}{{(\tan x + \sec x)(1 - \sec x + \tan x)}}\]
Now, you can observe that, there is a term common in numerator and denominator which is \[\tan x - \sec x + 1\], so they get cancelled off.
\[ \Rightarrow \dfrac{1}{{\tan x + \sec x}}\]
We know that, \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] and \[\sec x = \dfrac{1}{{\cos x}}\].
So, substitute these values in the expression.
\[ \Rightarrow \dfrac{1}{{\dfrac{{\sin x}}{{\cos x}} + \dfrac{1}{{\cos x}}}}\]
\[ \Rightarrow \dfrac{1}{{\dfrac{{\sin x + 1}}{{\cos x}}}}\]
And finally, we can conclude that,
\[ \Rightarrow \dfrac{{\cos x}}{{1 + \sin x}} = RHS\]
Note:
There is another way of verifying this equation.
We can also solve this problem in another way by multiplying both the numerator and denominator by \[{\cos ^2}x\].
\[LHS \Rightarrow \dfrac{{{{\cos }^2}x(\tan x - \sec x + 1)}}{{{{\cos }^2}x(\tan x + \sec x - 1)}}\]
Take a \[\cos x\] from \[{\cos ^2}x\] in the numerator and multiply it to the next term.
\[LHS \Rightarrow \dfrac{{\cos x(\tan x.\cos x - \sec x.\cos x + 1.\cos x)}}{{\tan x.{{\cos }^2}x + \sec x.{{\cos }^2}x - 1.{{\cos }^2}x}}\]
Now, we know that, \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] and \[\sec x = \dfrac{1}{{\cos x}}\].
So, substitute these values in the expression.
\[ \Rightarrow \dfrac{{\cos x\left( {\dfrac{{\sin x}}{{\cos x}}.\cos x - \dfrac{1}{{\cos x}}.\cos x + 1.\cos x} \right)}}{{\left( {\dfrac{{\sin x}}{{\cos x}}.{{\cos }^2}x + \dfrac{1}{{\cos x}}.{{\cos }^2}x - 1.{{\cos }^2}x} \right)}}\]
\[ \Rightarrow \dfrac{{\cos x\left( {\sin x - 1 + \cos x} \right)}}{{\left( {\sin x.\cos x + \cos x - {{\cos }^2}x} \right)}}\]
We know that, \[{\cos ^2}x = 1 - {\sin ^2}x\]
\[ \Rightarrow \dfrac{{\cos x\left( {\sin x - 1 + \cos x} \right)}}{{\sin x.\cos x + \cos x - (1 - {{\sin }^2}x)}}\]
As we know the formula \[{a^2} - {b^2} = (a + b)(a - b)\]
\[ \Rightarrow \dfrac{{\cos x\left( {\sin x - 1 + \cos x} \right)}}{{\cos x(1 + \sin x) - (1 - \sin x)(1 + \sin x)}}\]
\[ \Rightarrow \dfrac{{\cos x\left( {\sin x - 1 + \cos x} \right)}}{{(1 + \sin x)(\cos x - (1 - \sin x))}}\]
So, we can conclude that,
\[LHS \Rightarrow \dfrac{{\cos x\left( {\sin x - 1 + \cos x} \right)}}{{(1 + \sin x)(\cos x - 1 + \sin x)}}\]
\[LHS \Rightarrow \dfrac{{\cos x}}{{1 + \sin x}}\]
So, here, LHS is equal to RHS.
The formulas that we use in this problem are \[{\cos ^2}x + {\sin ^2}x = 1\] and \[{\sec ^2}x - {\tan ^2}x = 1\] which are standard trigonometric identities.
Complete step by step answer:
To solve this problem, consider the left-hand side of the equation and the right-hand side of the equation. And then we simplify the left-hand side of the equation and check whether we are getting the same expression present on the right-hand side as our result.
Now, in left hand side of equation, it is given as \[\dfrac{{\tan x - \sec x + 1}}{{\tan x + \sec x - 1}}\]
We know the identity \[{\sec ^2}x - {\tan ^2}x = 1\]
So, substitute the value of 1, in the denominator.
\[ \Rightarrow \dfrac{{\tan x - \sec x + 1}}{{\tan x + \sec x - ({{\sec }^2}x - {{\tan }^2}x)}}\]
We all know that, \[{a^2} - {b^2} = (a + b)(a - b)\]
So, we can write \[{\sec ^2}x - {\tan ^2}x = (\sec x + \tan x)(\sec x - \tan x)\]
So, we get,
\[ \Rightarrow \dfrac{{\tan x - \sec x + 1}}{{\tan x + \sec x - (\sec x + \tan x)(\sec x - \tan x)}}\]
Now take the term \[\sec x + \tan x\] common in the denominator.
\[ \Rightarrow \dfrac{{\tan x - \sec x + 1}}{{(\tan x + \sec x)(1 - (\sec x - \tan x))}}\]
\[ \Rightarrow \dfrac{{\tan x - \sec x + 1}}{{(\tan x + \sec x)(1 - \sec x + \tan x)}}\]
Now, you can observe that, there is a term common in numerator and denominator which is \[\tan x - \sec x + 1\], so they get cancelled off.
\[ \Rightarrow \dfrac{1}{{\tan x + \sec x}}\]
We know that, \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] and \[\sec x = \dfrac{1}{{\cos x}}\].
So, substitute these values in the expression.
\[ \Rightarrow \dfrac{1}{{\dfrac{{\sin x}}{{\cos x}} + \dfrac{1}{{\cos x}}}}\]
\[ \Rightarrow \dfrac{1}{{\dfrac{{\sin x + 1}}{{\cos x}}}}\]
And finally, we can conclude that,
\[ \Rightarrow \dfrac{{\cos x}}{{1 + \sin x}} = RHS\]
Note:
There is another way of verifying this equation.
We can also solve this problem in another way by multiplying both the numerator and denominator by \[{\cos ^2}x\].
\[LHS \Rightarrow \dfrac{{{{\cos }^2}x(\tan x - \sec x + 1)}}{{{{\cos }^2}x(\tan x + \sec x - 1)}}\]
Take a \[\cos x\] from \[{\cos ^2}x\] in the numerator and multiply it to the next term.
\[LHS \Rightarrow \dfrac{{\cos x(\tan x.\cos x - \sec x.\cos x + 1.\cos x)}}{{\tan x.{{\cos }^2}x + \sec x.{{\cos }^2}x - 1.{{\cos }^2}x}}\]
Now, we know that, \[\tan x = \dfrac{{\sin x}}{{\cos x}}\] and \[\sec x = \dfrac{1}{{\cos x}}\].
So, substitute these values in the expression.
\[ \Rightarrow \dfrac{{\cos x\left( {\dfrac{{\sin x}}{{\cos x}}.\cos x - \dfrac{1}{{\cos x}}.\cos x + 1.\cos x} \right)}}{{\left( {\dfrac{{\sin x}}{{\cos x}}.{{\cos }^2}x + \dfrac{1}{{\cos x}}.{{\cos }^2}x - 1.{{\cos }^2}x} \right)}}\]
\[ \Rightarrow \dfrac{{\cos x\left( {\sin x - 1 + \cos x} \right)}}{{\left( {\sin x.\cos x + \cos x - {{\cos }^2}x} \right)}}\]
We know that, \[{\cos ^2}x = 1 - {\sin ^2}x\]
\[ \Rightarrow \dfrac{{\cos x\left( {\sin x - 1 + \cos x} \right)}}{{\sin x.\cos x + \cos x - (1 - {{\sin }^2}x)}}\]
As we know the formula \[{a^2} - {b^2} = (a + b)(a - b)\]
\[ \Rightarrow \dfrac{{\cos x\left( {\sin x - 1 + \cos x} \right)}}{{\cos x(1 + \sin x) - (1 - \sin x)(1 + \sin x)}}\]
\[ \Rightarrow \dfrac{{\cos x\left( {\sin x - 1 + \cos x} \right)}}{{(1 + \sin x)(\cos x - (1 - \sin x))}}\]
So, we can conclude that,
\[LHS \Rightarrow \dfrac{{\cos x\left( {\sin x - 1 + \cos x} \right)}}{{(1 + \sin x)(\cos x - 1 + \sin x)}}\]
\[LHS \Rightarrow \dfrac{{\cos x}}{{1 + \sin x}}\]
So, here, LHS is equal to RHS.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

