
How do you verify the identity $\dfrac{{\sin x\cos y + \cos x\sin y}}{{\cos x\cos y - \sin x\sin y}} = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$ ?
Answer
536.4k+ views
Hint:To solve this question, we need to use the basic relations of the trigonometric functions. We will mainly use the relation between sine, cosine and tangent function. This relation is that the ratio of sine and cosine function is the tangent function.
Complete step by step answer:
$L.H.S = \dfrac{{\sin x\cos y + \cos x\sin y}}{{\cos x\cos y - \sin x\sin y}}$
First, we will divide both numerator and denominator by $\cos x\cos y$.
$ \Rightarrow L.H.S = \dfrac{{\dfrac{{\sin x\cos y + \cos x\sin y}}{{\cos x\cos y}}}}{{\dfrac{{\cos x\cos y - \sin x\sin y}}{{\cos x\cos y}}}}$
Now, we will separate the terms in numerator and denominator.
$ \Rightarrow L.H.S = \dfrac{{\dfrac{{\sin x\cos y}}{{\cos x\cos y}} + \dfrac{{\cos x\sin y}}{{\cos x\cos y}}}}{{\dfrac{{\cos x\cos y}}{{\cos x\cos y}} - \dfrac{{\sin x\sin y}}{{\cos x\cos y}}}}$
We will now cancel out similar terms from numerator and denominator.
$ \Rightarrow L.H.S = \dfrac{{\dfrac{{\sin x}}{{\cos x}} + \dfrac{{\sin y}}{{\cos y}}}}{{1 - \dfrac{{\sin x\sin y}}{{\cos x\cos y}}}}$
We know that the ratio of sine and cosine function is the tangent function.
Therefore, $\dfrac{{\sin x}}{{\cos x}} = \tan x$ and $\dfrac{{\sin y}}{{\cos y}} = \tan y$.
We will put these values in the L.H.S.
$ \Rightarrow L.H.S = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$
This is our R.H.S.
$ \therefore L.H.S = R.H.S.$
Hence, it is proved that $\dfrac{{\sin x\cos y + \cos x\sin y}}{{\cos x\cos y - \sin x\sin y}} = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$.
Note:Here, we have started with the left hand side and then proved the given identity. But, we can also start with the right hand side and reach to the left hand side to prove the given trigonometric identity.
$ \Rightarrow R.H.S = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$
We will first use the definition of tangent function that it is the ratio of sine and cosine functions.Therefore,
$\dfrac{{\sin x}}{{\cos x}} = \tan x$ and $\tan y = \dfrac{{\sin y}}{{\cos y}}$
We will put these values in the R.H.S.
$ \Rightarrow R.H.S = \dfrac{{\dfrac{{\sin x}}{{\cos x}} + \dfrac{{\sin y}}{{\cos y}}}}{{1 - \dfrac{{\sin x\sin y}}{{\cos x\cos y}}}}$
Now we will take LCM in both numerator and denominator. The LCM for both is $\cos x\cos y$.
$ \Rightarrow R.H.S = \dfrac{{\dfrac{{\sin x\cos y + \cos x\sin y}}{{\cos x\cos y}}}}{{\dfrac{{\cos x\cos y - \sin x\sin y}}{{\cos x\cos y}}}}$
We can also write this term by converting the division into multiplication.
$ \Rightarrow R.H.S = \dfrac{{\sin x\cos y + \cos x\sin y}}{{\cos x\cos y}} \times \dfrac{{\cos x\cos y}}{{\cos x\cos y - \sin x\sin y}}$
We know that the common terms in the numerator and the denominator will get cancelled out. Therefore, here $\cos x\cos y$ will be cancelled out and we can write the right hand side as:
$ \Rightarrow R.H.S = \dfrac{{\sin x\cos y + \cos x\sin y}}{{\cos x\cos y - \sin x\sin y}}$
This is our R.H.S.
$ \Rightarrow R.H.S = L.H.S$
Hence, it is proved that $\dfrac{{\sin x\cos y + \cos x\sin y}}{{\cos x\cos y - \sin x\sin y}} = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$.
Complete step by step answer:
$L.H.S = \dfrac{{\sin x\cos y + \cos x\sin y}}{{\cos x\cos y - \sin x\sin y}}$
First, we will divide both numerator and denominator by $\cos x\cos y$.
$ \Rightarrow L.H.S = \dfrac{{\dfrac{{\sin x\cos y + \cos x\sin y}}{{\cos x\cos y}}}}{{\dfrac{{\cos x\cos y - \sin x\sin y}}{{\cos x\cos y}}}}$
Now, we will separate the terms in numerator and denominator.
$ \Rightarrow L.H.S = \dfrac{{\dfrac{{\sin x\cos y}}{{\cos x\cos y}} + \dfrac{{\cos x\sin y}}{{\cos x\cos y}}}}{{\dfrac{{\cos x\cos y}}{{\cos x\cos y}} - \dfrac{{\sin x\sin y}}{{\cos x\cos y}}}}$
We will now cancel out similar terms from numerator and denominator.
$ \Rightarrow L.H.S = \dfrac{{\dfrac{{\sin x}}{{\cos x}} + \dfrac{{\sin y}}{{\cos y}}}}{{1 - \dfrac{{\sin x\sin y}}{{\cos x\cos y}}}}$
We know that the ratio of sine and cosine function is the tangent function.
Therefore, $\dfrac{{\sin x}}{{\cos x}} = \tan x$ and $\dfrac{{\sin y}}{{\cos y}} = \tan y$.
We will put these values in the L.H.S.
$ \Rightarrow L.H.S = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$
This is our R.H.S.
$ \therefore L.H.S = R.H.S.$
Hence, it is proved that $\dfrac{{\sin x\cos y + \cos x\sin y}}{{\cos x\cos y - \sin x\sin y}} = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$.
Note:Here, we have started with the left hand side and then proved the given identity. But, we can also start with the right hand side and reach to the left hand side to prove the given trigonometric identity.
$ \Rightarrow R.H.S = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$
We will first use the definition of tangent function that it is the ratio of sine and cosine functions.Therefore,
$\dfrac{{\sin x}}{{\cos x}} = \tan x$ and $\tan y = \dfrac{{\sin y}}{{\cos y}}$
We will put these values in the R.H.S.
$ \Rightarrow R.H.S = \dfrac{{\dfrac{{\sin x}}{{\cos x}} + \dfrac{{\sin y}}{{\cos y}}}}{{1 - \dfrac{{\sin x\sin y}}{{\cos x\cos y}}}}$
Now we will take LCM in both numerator and denominator. The LCM for both is $\cos x\cos y$.
$ \Rightarrow R.H.S = \dfrac{{\dfrac{{\sin x\cos y + \cos x\sin y}}{{\cos x\cos y}}}}{{\dfrac{{\cos x\cos y - \sin x\sin y}}{{\cos x\cos y}}}}$
We can also write this term by converting the division into multiplication.
$ \Rightarrow R.H.S = \dfrac{{\sin x\cos y + \cos x\sin y}}{{\cos x\cos y}} \times \dfrac{{\cos x\cos y}}{{\cos x\cos y - \sin x\sin y}}$
We know that the common terms in the numerator and the denominator will get cancelled out. Therefore, here $\cos x\cos y$ will be cancelled out and we can write the right hand side as:
$ \Rightarrow R.H.S = \dfrac{{\sin x\cos y + \cos x\sin y}}{{\cos x\cos y - \sin x\sin y}}$
This is our R.H.S.
$ \Rightarrow R.H.S = L.H.S$
Hence, it is proved that $\dfrac{{\sin x\cos y + \cos x\sin y}}{{\cos x\cos y - \sin x\sin y}} = \dfrac{{\tan x + \tan y}}{{1 - \tan x\tan y}}$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

