
Verify the following
(i) $ {x^3} + {y^3} = (x + y)({x^2} - xy + {y^2}) $
(ii) $ {x^3} - {y^3} = (x - y)({x^2} + xy + {y^2}) $
Answer
562.8k+ views
Hint: Use the expansion formula of $ {(a + b)^3} $ then rearrange the terms in such a way that you get the desired result to verify the equations in the question rearranging the terms of the expression is the most important part of the solution.
Complete step-by-step answer:
(i) $ {x^3} + {y^3} = (x + y)({x^2} - xy + {y^2}) $
We know that
$ {(x + y)^3} = {x^3} + {y^3} + 3xy(x + y) $
By rearranging it, we can write
$ {x^3} + {y^3} = {(x + y)^3} - 3xy(x + y) $
By taking $ x + y $ common, we get
$ {x^3} + {y^3} = [x + y][{(x + y)^2} - 3xy] $
Use the expansion formula $ {\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2} $ to get
$ {x^3} + {y^3} = \left[ {x + y} \right]\left[ {{x^2} + 2xy + {y^2} - 3xy} \right] $
By simplifying it, we get
$ {x^3} + {y^3} = [x + y]\left[ {{x^2} + {y^2} - xy} \right] $
By rearranging it, we get
$ {x^3} + {y^3} = [x + y]\left[ {{x^2} - xy + {y^2}} \right] $
$ = R.H.S $
Hence $ {x^3} + {y^3} = (x + y)({x^2} - xy + {y^2}) $ is verified
(ii) Now, we have to verify, $ {x^3} - {y^3} = (x - y)({x^2} + xy + {y^2}) $
We know that
$ {(x - y)^3} = {x^3} - {y^3} - 3xy(x - y) $
By rearranging it, we get
$ {x^3} - {y^3} = {(x - y)^3} + 3xy(x - y) $
By taking $ (x - y) $ common, we get
$ {x^3} - {y^3} = (x - y)\left[ {{{\left( {x - y} \right)}^2} + 3xy} \right] $
By expanding it using $ {\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2} $ , we get
$ {x^3} - {y^3} = \left[ {x - y} \right]\left[ {{x^2} - 2xy + {y^2} + 3xy} \right] $
On simplifying it, we get
$ {x^3} - {y^3} = \left[ {x - y} \right]\left[ {{x^2} + xy + {y^2}} \right] $
$ = R.H.S $
Hence it is verified that $ {x^3} - {y^3} = (x - y)({x^2} + xy + {y^2}) $
Note: All we did in this question is to manipulate the terms of formula to get the desired result. You need to understand how to manipulate any standard formula so solve such kinds of questions. But you cannot solve such questions if you don’t know the formula in the first place.
Complete step-by-step answer:
(i) $ {x^3} + {y^3} = (x + y)({x^2} - xy + {y^2}) $
We know that
$ {(x + y)^3} = {x^3} + {y^3} + 3xy(x + y) $
By rearranging it, we can write
$ {x^3} + {y^3} = {(x + y)^3} - 3xy(x + y) $
By taking $ x + y $ common, we get
$ {x^3} + {y^3} = [x + y][{(x + y)^2} - 3xy] $
Use the expansion formula $ {\left( {a + b} \right)^2} = {a^2} + 2ab + {b^2} $ to get
$ {x^3} + {y^3} = \left[ {x + y} \right]\left[ {{x^2} + 2xy + {y^2} - 3xy} \right] $
By simplifying it, we get
$ {x^3} + {y^3} = [x + y]\left[ {{x^2} + {y^2} - xy} \right] $
By rearranging it, we get
$ {x^3} + {y^3} = [x + y]\left[ {{x^2} - xy + {y^2}} \right] $
$ = R.H.S $
Hence $ {x^3} + {y^3} = (x + y)({x^2} - xy + {y^2}) $ is verified
(ii) Now, we have to verify, $ {x^3} - {y^3} = (x - y)({x^2} + xy + {y^2}) $
We know that
$ {(x - y)^3} = {x^3} - {y^3} - 3xy(x - y) $
By rearranging it, we get
$ {x^3} - {y^3} = {(x - y)^3} + 3xy(x - y) $
By taking $ (x - y) $ common, we get
$ {x^3} - {y^3} = (x - y)\left[ {{{\left( {x - y} \right)}^2} + 3xy} \right] $
By expanding it using $ {\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2} $ , we get
$ {x^3} - {y^3} = \left[ {x - y} \right]\left[ {{x^2} - 2xy + {y^2} + 3xy} \right] $
On simplifying it, we get
$ {x^3} - {y^3} = \left[ {x - y} \right]\left[ {{x^2} + xy + {y^2}} \right] $
$ = R.H.S $
Hence it is verified that $ {x^3} - {y^3} = (x - y)({x^2} + xy + {y^2}) $
Note: All we did in this question is to manipulate the terms of formula to get the desired result. You need to understand how to manipulate any standard formula so solve such kinds of questions. But you cannot solve such questions if you don’t know the formula in the first place.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 English: Engaging Questions & Answers for Success

Why are manures considered better than fertilizers class 11 biology CBSE

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

What is the difference between rai and mustard see class 8 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

