
Verify that \[{x^3} + {y^3} + {z^3} - 3xyz = \dfrac{1}{2}\left( {x + y + z} \right)\left[ {{{\left( {x - y} \right)}^2} + \left( {y - z} \right) + {{\left( {z - x} \right)}^2}} \right]\]
Answer
511.5k+ views
Hint: To solve this question, use cubic identity formula given as:
\[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\]
If the left-hand side of an equation is equal to the right side for any values of the variable, then that equation is an identity which is used in algebraic expansions and factorizations. In standard identities, the values are equal to each other regardless of what values are substituted for the variables. In the identity polynomial variables having degree 3 is called cubic identity.
Complete step-by-step answer:
Here, in the question we need to compare the given function with the standard function and elaborate the function following the identity discussed above to get the result.
Given equation is: \[{x^3} + {y^3} + {z^3} - 3xyz = \dfrac{1}{2}\left( {x + y + z} \right)\left[ {{{\left( {x - y} \right)}^2} + \left( {y - z} \right) + {{\left( {z - x} \right)}^2}} \right]\]
Solving the Right Hand Side of the give equation as:
\[RHS = \dfrac{1}{2}\left( {x + y + z} \right)\left[ {{{\left( {x - y} \right)}^2} + \left( {y - z} \right) + {{\left( {z - x} \right)}^2}} \right]\]
Use the algebraic identity\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], to approach further in the equation
\[
R.H.S = \dfrac{1}{2}\left( {x + y + z} \right)\left[ {{{\left( {x - y} \right)}^2} + \left( {y - z} \right) + {{\left( {z - x} \right)}^2}} \right] \\
= \dfrac{1}{2}\left( {x + y + z} \right)\left[ {\left( {{x^2} + {y^2} - 2xy} \right) + \left( {{y^2} + {z^2} - 2yz} \right) + \left( {{z^2} + {x^2} - 2zx} \right)} \right] \\
= \dfrac{1}{2}\left( {x + y + z} \right)\left[ {2{x^2} + 2{y^2} + 2{z^2} - 2xy - 2yz - 2zx} \right] \\
= \dfrac{1}{2}\left( {x + y + z} \right)2\left[ {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right] \\
= \left( {x + y + z} \right)\left[ {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right] \\
\]
We know that, \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\]
Hence we can say that,
\[{x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left[ {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right]\]
\[
= {x^3} + {y^3} + {z^3} - 3xyz \\
= L.H.S \\
\]
Since R.H.S=L.H.S, hence we can say the equation is verified
Note: The three algebraic identities in maths are
Identity 1: \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
Identity 2: \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Identity 3: \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Students can check whether a given equation is the identity or not by transforming either one side of an equation in such a way that they become equal to the other side of the equation.
\[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\]
If the left-hand side of an equation is equal to the right side for any values of the variable, then that equation is an identity which is used in algebraic expansions and factorizations. In standard identities, the values are equal to each other regardless of what values are substituted for the variables. In the identity polynomial variables having degree 3 is called cubic identity.
Complete step-by-step answer:
Here, in the question we need to compare the given function with the standard function and elaborate the function following the identity discussed above to get the result.
Given equation is: \[{x^3} + {y^3} + {z^3} - 3xyz = \dfrac{1}{2}\left( {x + y + z} \right)\left[ {{{\left( {x - y} \right)}^2} + \left( {y - z} \right) + {{\left( {z - x} \right)}^2}} \right]\]
Solving the Right Hand Side of the give equation as:
\[RHS = \dfrac{1}{2}\left( {x + y + z} \right)\left[ {{{\left( {x - y} \right)}^2} + \left( {y - z} \right) + {{\left( {z - x} \right)}^2}} \right]\]
Use the algebraic identity\[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\], to approach further in the equation
\[
R.H.S = \dfrac{1}{2}\left( {x + y + z} \right)\left[ {{{\left( {x - y} \right)}^2} + \left( {y - z} \right) + {{\left( {z - x} \right)}^2}} \right] \\
= \dfrac{1}{2}\left( {x + y + z} \right)\left[ {\left( {{x^2} + {y^2} - 2xy} \right) + \left( {{y^2} + {z^2} - 2yz} \right) + \left( {{z^2} + {x^2} - 2zx} \right)} \right] \\
= \dfrac{1}{2}\left( {x + y + z} \right)\left[ {2{x^2} + 2{y^2} + 2{z^2} - 2xy - 2yz - 2zx} \right] \\
= \dfrac{1}{2}\left( {x + y + z} \right)2\left[ {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right] \\
= \left( {x + y + z} \right)\left[ {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right] \\
\]
We know that, \[{a^3} + {b^3} + {c^3} - 3abc = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - bc - ca} \right)\]
Hence we can say that,
\[{x^3} + {y^3} + {z^3} - 3xyz = \left( {x + y + z} \right)\left[ {{x^2} + {y^2} + {z^2} - xy - yz - zx} \right]\]
\[
= {x^3} + {y^3} + {z^3} - 3xyz \\
= L.H.S \\
\]
Since R.H.S=L.H.S, hence we can say the equation is verified
Note: The three algebraic identities in maths are
Identity 1: \[{\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab\]
Identity 2: \[{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab\]
Identity 3: \[{a^2} - {b^2} = \left( {a + b} \right)\left( {a - b} \right)\]
Students can check whether a given equation is the identity or not by transforming either one side of an equation in such a way that they become equal to the other side of the equation.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

How many ounces are in 500 mL class 8 maths CBSE

Name the states through which the Tropic of Cancer class 8 social science CBSE

How many ten lakhs are in one crore-class-8-maths-CBSE

What is the value of e infty class 8 maths CBSE

Explain land use pattern in India and why has the land class 8 social science CBSE
