
Verify that the given numbers alongside the cubic polynomials are their zeroes. Also, verify the relationship between the zeroes and the coefficients in each case:
(i) $ 2{x^3} + {x^2} - 5x + 2;\dfrac{1}{2},1, - 2 $
(ii) $ {x^3} - 4{x^2} + 5x - 2;\,2,1,1 $
Answer
543.6k+ views
Hint: First we will reduce the equation further if possible. Then we will try to factorise the terms in the equation. Then solve the equation by using the quadratic formula and finally evaluate the value of the variable accordingly.
Complete step by step solution:
We will start off by considering the given equation as a function of p such that $ p(x) = 2{x^3} + {x^2} - 5x + 2 $ .
We know that $ \dfrac{1}{2},1 $ and $ - 2 $ are the roots of the expression then we can say that,
\[\left( {x - \dfrac{1}{2}} \right)\left( {x - 1} \right)\left( {x + 2} \right)\] are the factors of $ p(x) $ .
Since\[\left( {x - \dfrac{1}{2}} \right)\left( {x - 1} \right)\left( {x + 2} \right)\] are the factors of $ p(x) $ we can say that if we substitute the values $ \dfrac{1}{2},1 $ and $ - 2 $ in the equation $ 2{x^3} + {x^2} - 5x + 2 $ we will get the value as zero.
Now we will start substituting the values and check if we get zero.
$
= 2{x^3} + {x^2} - 5x + 2 \\
= 2{\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{2}} \right)^2} - 5\left( {\dfrac{1}{2}} \right) + 2 \\
= 2\left( {\dfrac{1}{8}} \right) + \left( {\dfrac{1}{4}} \right) - \left( {\dfrac{5}{2}} \right) + 2 \\
= \left( {\dfrac{1}{2}} \right) - \left( {\dfrac{5}{2}} \right) + 2 \\
= - \left( {\dfrac{4}{2}} \right) + 2 \\
= - 2 + 2 \\
= 0 \;
$
Therefore, $ \left( {\dfrac{1}{2}} \right) $ is a root of the expression $ 2{x^3} + {x^2} - 5x + 2 $ .
Now we will substitute the value $ 1 $ in the expression.
$
= 2{x^3} + {x^2} - 5x + 2 \\
= 2{\left( 1 \right)^3} + {\left( 1 \right)^2} - 5\left( 1 \right) + 2 \\
= 2 + 1 - 5 + 2 \\
= 5 - 5 \\
= 0 \;
$
Therefore, $ 1 $ is a root of the expression $ 2{x^3} + {x^2} - 5x + 2 $ .
Now we will substitute the value $ - 2 $ in the expression.
$
= 2{x^3} + {x^2} - 5x + 2 \\
= 2{\left( { - 2} \right)^3} + {\left( { - 2} \right)^2} - 5\left( { - 2} \right) + 2 \\
= 2( - 8) + (4) + (10) + 2 \\
= - 16 + 4 + 10 + 2 \\
= - 16 - 16 \\
= 0 \;
$
Therefore, $ - 2 $ is a root of the expression $ 2{x^3} + {x^2} - 5x + 2 $ .
II.
We will start off by considering the given equation as a function of p such that $ p(x) = {x^3} - 4{x^2} + 5x - 2 $ .
We know that $ 2,1 $ and $ 1 $ are the roots of the expression then we can say that,
\[\left( {x - 2} \right)\left( {x - 1} \right)\] are the factors of $ p(x) $ .
Since\[\left( {x - 2} \right)\left( {x - 1} \right)\] are the factors of $ p(x) $ we can say that if we substitute the values $ 2,1 $ and $ 1 $ in the equation $ {x^3} - 4{x^2} + 5x - 2 $ we will get the value as zero.
Now we will start substituting the values and check if we get zero.
$
= {x^3} - 4{x^2} + 5x - 2 \\
= {(2)^3} - 4{(2)^2} + 5(2) - 2 \\
= 8 - 4(4) + (10) - 2 \\
= 8 - 16 + 10 - 2 \\
= 18 - 18 \\
= 0 \;
$
Therefore, $ 2 $ is a root of the expression $ {x^3} - 4{x^2} + 5x - 2 $ .
Now we will substitute the value $ 1 $ in the expression.
$
= {x^3} - 4{x^2} + 5x - 2 \\
= {(1)^3} - 4{(1)^2} + 5(1) - 2 \\
= 1 - 4(1) + 5 - 2 \\
= 1 - 4 + 5 - 2 \\
= 6 - 6 \\
= 0 \;
$
Therefore, $ 1 $ is a root of the expression $ {x^3} - 4{x^2} + 5x - 2 $ .
Note: Do not solve all the equations simultaneously. Solve all the equations separately, so that you don’t miss any term of the solution. Check if the solution satisfies the original equation completely. If any term of the solution doesn’t satisfy the equation, then that term will not be considered as a part of the solution.
Complete step by step solution:
We will start off by considering the given equation as a function of p such that $ p(x) = 2{x^3} + {x^2} - 5x + 2 $ .
We know that $ \dfrac{1}{2},1 $ and $ - 2 $ are the roots of the expression then we can say that,
\[\left( {x - \dfrac{1}{2}} \right)\left( {x - 1} \right)\left( {x + 2} \right)\] are the factors of $ p(x) $ .
Since\[\left( {x - \dfrac{1}{2}} \right)\left( {x - 1} \right)\left( {x + 2} \right)\] are the factors of $ p(x) $ we can say that if we substitute the values $ \dfrac{1}{2},1 $ and $ - 2 $ in the equation $ 2{x^3} + {x^2} - 5x + 2 $ we will get the value as zero.
Now we will start substituting the values and check if we get zero.
$
= 2{x^3} + {x^2} - 5x + 2 \\
= 2{\left( {\dfrac{1}{2}} \right)^3} + {\left( {\dfrac{1}{2}} \right)^2} - 5\left( {\dfrac{1}{2}} \right) + 2 \\
= 2\left( {\dfrac{1}{8}} \right) + \left( {\dfrac{1}{4}} \right) - \left( {\dfrac{5}{2}} \right) + 2 \\
= \left( {\dfrac{1}{2}} \right) - \left( {\dfrac{5}{2}} \right) + 2 \\
= - \left( {\dfrac{4}{2}} \right) + 2 \\
= - 2 + 2 \\
= 0 \;
$
Therefore, $ \left( {\dfrac{1}{2}} \right) $ is a root of the expression $ 2{x^3} + {x^2} - 5x + 2 $ .
Now we will substitute the value $ 1 $ in the expression.
$
= 2{x^3} + {x^2} - 5x + 2 \\
= 2{\left( 1 \right)^3} + {\left( 1 \right)^2} - 5\left( 1 \right) + 2 \\
= 2 + 1 - 5 + 2 \\
= 5 - 5 \\
= 0 \;
$
Therefore, $ 1 $ is a root of the expression $ 2{x^3} + {x^2} - 5x + 2 $ .
Now we will substitute the value $ - 2 $ in the expression.
$
= 2{x^3} + {x^2} - 5x + 2 \\
= 2{\left( { - 2} \right)^3} + {\left( { - 2} \right)^2} - 5\left( { - 2} \right) + 2 \\
= 2( - 8) + (4) + (10) + 2 \\
= - 16 + 4 + 10 + 2 \\
= - 16 - 16 \\
= 0 \;
$
Therefore, $ - 2 $ is a root of the expression $ 2{x^3} + {x^2} - 5x + 2 $ .
II.
We will start off by considering the given equation as a function of p such that $ p(x) = {x^3} - 4{x^2} + 5x - 2 $ .
We know that $ 2,1 $ and $ 1 $ are the roots of the expression then we can say that,
\[\left( {x - 2} \right)\left( {x - 1} \right)\] are the factors of $ p(x) $ .
Since\[\left( {x - 2} \right)\left( {x - 1} \right)\] are the factors of $ p(x) $ we can say that if we substitute the values $ 2,1 $ and $ 1 $ in the equation $ {x^3} - 4{x^2} + 5x - 2 $ we will get the value as zero.
Now we will start substituting the values and check if we get zero.
$
= {x^3} - 4{x^2} + 5x - 2 \\
= {(2)^3} - 4{(2)^2} + 5(2) - 2 \\
= 8 - 4(4) + (10) - 2 \\
= 8 - 16 + 10 - 2 \\
= 18 - 18 \\
= 0 \;
$
Therefore, $ 2 $ is a root of the expression $ {x^3} - 4{x^2} + 5x - 2 $ .
Now we will substitute the value $ 1 $ in the expression.
$
= {x^3} - 4{x^2} + 5x - 2 \\
= {(1)^3} - 4{(1)^2} + 5(1) - 2 \\
= 1 - 4(1) + 5 - 2 \\
= 1 - 4 + 5 - 2 \\
= 6 - 6 \\
= 0 \;
$
Therefore, $ 1 $ is a root of the expression $ {x^3} - 4{x^2} + 5x - 2 $ .
Note: Do not solve all the equations simultaneously. Solve all the equations separately, so that you don’t miss any term of the solution. Check if the solution satisfies the original equation completely. If any term of the solution doesn’t satisfy the equation, then that term will not be considered as a part of the solution.
Recently Updated Pages
Master Class 8 Social Science: Engaging Questions & Answers for Success

Master Class 8 English: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Master Class 8 Science: Engaging Questions & Answers for Success

Master Class 7 English: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest States of India?

What is the theme or message of the poem The road not class 9 english CBSE

What are the major achievements of the UNO class 9 social science CBSE

Explain the importance of pH in everyday life class 9 chemistry CBSE

Differentiate between parenchyma collenchyma and sclerenchyma class 9 biology CBSE

Give 5 examples of refraction of light in daily life


