
Verify that, 3, -1, $ \dfrac{-1}{3} $ are the zeroes of the cubic polynomial $ p\left( x \right)=3{{x}^{3}}-5{{x}^{2}}-11x-3 $ and then verify the relationship between the zeroes and the coefficient.
Answer
567.3k+ views
Hint: In this question, we need to verify the given zeroes of the polynomial p(x) and also the relationship between the zeroes and the coefficient. For verifying zero, we will put the value of x as given zeroes one by one in p(x) and prove it to be equal to zero. For verifying the relationship between zeroes and coefficient, we will verify following relation:
For zeroes $ \alpha ,\beta ,\gamma $ of a polynomial $ p\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d $ .
\[\begin{align}
& \text{Sum}\left( \alpha +\beta +\gamma \right)=\dfrac{-b}{a} \\
& \text{Product}\left( \alpha \beta \gamma \right)=\dfrac{-d}{a} \\
& \alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a} \\
\end{align}\]
Complete step by step answer:
Here we are given the polynomial p(x) as $ 3{{x}^{3}}-5{{x}^{2}}-11x-3 $ .
Zeroes of the polynomial are given as 3, -1, $ \dfrac{-1}{3} $ .
We need to verify them first. For this, let us put their values in place of x in p(x).
Putting x = 3 in p(x) we get,
$ p\left( 3 \right)=3{{\left( 3 \right)}^{3}}-5{{\left( 3 \right)}^{2}}-11\left( 3 \right)-3 $ .
We know that $ {{\left( 3 \right)}^{3}}=27\text{ and }{{\left( 3 \right)}^{2}}=9 $ so we get,
\[\begin{align}
& p\left( 3 \right)=3\left( 27 \right)-5\left( 9 \right)-11\left( 3 \right)-3 \\
& \Rightarrow p\left( 3 \right)=81-45-33-3 \\
& \Rightarrow p\left( 3 \right)=0 \\
\end{align}\]
Value of x as 3 gives p(x) as zero, therefore 3 is a zero of the polynomial.
Putting x = -1 in polynomial, we get,
\[\begin{align}
& p\left( -1 \right)=3{{\left( -1 \right)}^{3}}-5{{\left( -1 \right)}^{2}}-11\left( -1 \right)-3 \\
& \Rightarrow p\left( -1 \right)=3\left( -1 \right)-5\left( -1 \right)+11-3 \\
& \Rightarrow p\left( -1 \right)=-3-5+11-3 \\
& \Rightarrow p\left( -1 \right)=0 \\
\end{align}\]
Value of x as -1 gives p(x) as zero, therefore, -1 is a zero of the polynomial.
Putting $ x=\dfrac{-1}{3} $ in polynomial we get,
\[\begin{align}
& p\left( \dfrac{-1}{3} \right)=3{{\left( \dfrac{-1}{3} \right)}^{3}}-5{{\left( \dfrac{-1}{3} \right)}^{2}}-11\left( \dfrac{-1}{3} \right)-3 \\
& \Rightarrow p\left( \dfrac{-1}{3} \right)=3\left( \dfrac{-1}{27} \right)-5\left( \dfrac{1}{9} \right)+\dfrac{11}{3}-3 \\
& \Rightarrow p\left( \dfrac{-1}{3} \right)=\dfrac{-1}{9}-\dfrac{5}{9}+\dfrac{11}{3}-3 \\
\end{align}\]
Taking LCM as 9 we get,
\[\begin{align}
& \Rightarrow p\left( \dfrac{-1}{3} \right)=\dfrac{-1-5+33-27}{9} \\
& \Rightarrow p\left( \dfrac{-1}{3} \right)=\dfrac{-33+33}{9} \\
& \Rightarrow p\left( \dfrac{-1}{3} \right)=0 \\
\end{align}\]
Value of x as $ \dfrac{-1}{3} $ gives p(x) as zero, therefore, $ \dfrac{-1}{0} $ is a zero of the polynomial.
Hence all three zeroes are verified.
Now let us verify the relationship between zeroes and the coefficient.
We know that, for a cubic polynomial $ a{{x}^{3}}+b{{x}^{2}}+cx+d $ with zeroes as $ \alpha ,\beta ,\gamma $ we have,
\[\begin{align}
& \alpha +\beta +\gamma =\dfrac{-b}{a} \\
& \alpha \beta \gamma =\dfrac{-d}{a} \\
& \alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a} \\
\end{align}\]
So here, $ \alpha =3,\beta =-1\text{ and }\gamma =\dfrac{-1}{3} $ .
Also comparing $ a{{x}^{3}}+b{{x}^{2}}+cx+d $ with $ 3{{x}^{3}}-5{{x}^{2}}-11x-3 $ we get, a = 3, b = -5, c = -11 and d = -3.
$ \alpha +\beta +\gamma =3+\left( -1 \right)+\left( \dfrac{-1}{3} \right)\Rightarrow 3-1-\dfrac{1}{3} $ .
Taking LCM as 3 we get,
\[\alpha +\beta +\gamma =\dfrac{9-3-1}{3}=\dfrac{5}{3}\].
Also $ \dfrac{-b}{a}=\dfrac{-\left( -5 \right)}{3}=\dfrac{5}{3} $ .
Therefore, $ \alpha +\beta +\gamma =\dfrac{-b}{a} $ .
Now,
$ \alpha \beta +\beta \gamma +\gamma \alpha =3\left( -1 \right)+\left( -1 \right)\left( \dfrac{-1}{3} \right)+\left( \dfrac{-1}{3} \right)\left( 3 \right)\Rightarrow -3+\dfrac{1}{3}-1\Rightarrow -4+\dfrac{1}{3} $ .
Taking LCM as 3 we get,
\[\alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{-12+1}{3}=\dfrac{-11}{3}\].
Also $ \dfrac{c}{a}=\dfrac{-11}{3} $ .
Therefore, \[\alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a}\].
Now \[\alpha \beta \gamma =\left( 3 \right)\left( -1 \right)\left( \dfrac{-1}{3} \right)=1\].
Also \[\dfrac{-d}{a}=\dfrac{-\left( -3 \right)}{3}=1\].
Therefore, \[\alpha \beta \gamma =\dfrac{-d}{a}\].
Note:
Students should take care of the signs while solving this sum. Zeroes of a polynomial are also called roots of the polynomial. Students should remember the relationship between the zeroes and the coefficient of the polynomials.
For zeroes $ \alpha ,\beta ,\gamma $ of a polynomial $ p\left( x \right)=a{{x}^{3}}+b{{x}^{2}}+cx+d $ .
\[\begin{align}
& \text{Sum}\left( \alpha +\beta +\gamma \right)=\dfrac{-b}{a} \\
& \text{Product}\left( \alpha \beta \gamma \right)=\dfrac{-d}{a} \\
& \alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a} \\
\end{align}\]
Complete step by step answer:
Here we are given the polynomial p(x) as $ 3{{x}^{3}}-5{{x}^{2}}-11x-3 $ .
Zeroes of the polynomial are given as 3, -1, $ \dfrac{-1}{3} $ .
We need to verify them first. For this, let us put their values in place of x in p(x).
Putting x = 3 in p(x) we get,
$ p\left( 3 \right)=3{{\left( 3 \right)}^{3}}-5{{\left( 3 \right)}^{2}}-11\left( 3 \right)-3 $ .
We know that $ {{\left( 3 \right)}^{3}}=27\text{ and }{{\left( 3 \right)}^{2}}=9 $ so we get,
\[\begin{align}
& p\left( 3 \right)=3\left( 27 \right)-5\left( 9 \right)-11\left( 3 \right)-3 \\
& \Rightarrow p\left( 3 \right)=81-45-33-3 \\
& \Rightarrow p\left( 3 \right)=0 \\
\end{align}\]
Value of x as 3 gives p(x) as zero, therefore 3 is a zero of the polynomial.
Putting x = -1 in polynomial, we get,
\[\begin{align}
& p\left( -1 \right)=3{{\left( -1 \right)}^{3}}-5{{\left( -1 \right)}^{2}}-11\left( -1 \right)-3 \\
& \Rightarrow p\left( -1 \right)=3\left( -1 \right)-5\left( -1 \right)+11-3 \\
& \Rightarrow p\left( -1 \right)=-3-5+11-3 \\
& \Rightarrow p\left( -1 \right)=0 \\
\end{align}\]
Value of x as -1 gives p(x) as zero, therefore, -1 is a zero of the polynomial.
Putting $ x=\dfrac{-1}{3} $ in polynomial we get,
\[\begin{align}
& p\left( \dfrac{-1}{3} \right)=3{{\left( \dfrac{-1}{3} \right)}^{3}}-5{{\left( \dfrac{-1}{3} \right)}^{2}}-11\left( \dfrac{-1}{3} \right)-3 \\
& \Rightarrow p\left( \dfrac{-1}{3} \right)=3\left( \dfrac{-1}{27} \right)-5\left( \dfrac{1}{9} \right)+\dfrac{11}{3}-3 \\
& \Rightarrow p\left( \dfrac{-1}{3} \right)=\dfrac{-1}{9}-\dfrac{5}{9}+\dfrac{11}{3}-3 \\
\end{align}\]
Taking LCM as 9 we get,
\[\begin{align}
& \Rightarrow p\left( \dfrac{-1}{3} \right)=\dfrac{-1-5+33-27}{9} \\
& \Rightarrow p\left( \dfrac{-1}{3} \right)=\dfrac{-33+33}{9} \\
& \Rightarrow p\left( \dfrac{-1}{3} \right)=0 \\
\end{align}\]
Value of x as $ \dfrac{-1}{3} $ gives p(x) as zero, therefore, $ \dfrac{-1}{0} $ is a zero of the polynomial.
Hence all three zeroes are verified.
Now let us verify the relationship between zeroes and the coefficient.
We know that, for a cubic polynomial $ a{{x}^{3}}+b{{x}^{2}}+cx+d $ with zeroes as $ \alpha ,\beta ,\gamma $ we have,
\[\begin{align}
& \alpha +\beta +\gamma =\dfrac{-b}{a} \\
& \alpha \beta \gamma =\dfrac{-d}{a} \\
& \alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a} \\
\end{align}\]
So here, $ \alpha =3,\beta =-1\text{ and }\gamma =\dfrac{-1}{3} $ .
Also comparing $ a{{x}^{3}}+b{{x}^{2}}+cx+d $ with $ 3{{x}^{3}}-5{{x}^{2}}-11x-3 $ we get, a = 3, b = -5, c = -11 and d = -3.
$ \alpha +\beta +\gamma =3+\left( -1 \right)+\left( \dfrac{-1}{3} \right)\Rightarrow 3-1-\dfrac{1}{3} $ .
Taking LCM as 3 we get,
\[\alpha +\beta +\gamma =\dfrac{9-3-1}{3}=\dfrac{5}{3}\].
Also $ \dfrac{-b}{a}=\dfrac{-\left( -5 \right)}{3}=\dfrac{5}{3} $ .
Therefore, $ \alpha +\beta +\gamma =\dfrac{-b}{a} $ .
Now,
$ \alpha \beta +\beta \gamma +\gamma \alpha =3\left( -1 \right)+\left( -1 \right)\left( \dfrac{-1}{3} \right)+\left( \dfrac{-1}{3} \right)\left( 3 \right)\Rightarrow -3+\dfrac{1}{3}-1\Rightarrow -4+\dfrac{1}{3} $ .
Taking LCM as 3 we get,
\[\alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{-12+1}{3}=\dfrac{-11}{3}\].
Also $ \dfrac{c}{a}=\dfrac{-11}{3} $ .
Therefore, \[\alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{c}{a}\].
Now \[\alpha \beta \gamma =\left( 3 \right)\left( -1 \right)\left( \dfrac{-1}{3} \right)=1\].
Also \[\dfrac{-d}{a}=\dfrac{-\left( -3 \right)}{3}=1\].
Therefore, \[\alpha \beta \gamma =\dfrac{-d}{a}\].
Note:
Students should take care of the signs while solving this sum. Zeroes of a polynomial are also called roots of the polynomial. Students should remember the relationship between the zeroes and the coefficient of the polynomials.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

