
Verify Lagrange’s Mean Value Theorem for the function f(x) = \[{e^x}\] in [0,1].
Answer
580.8k+ views
Hint: - We have to only find the derivative of the function f(x) then put x = c, after that equate f’(c) with (f(1) – f(0)) / 1 to find the value of c.
Complete step by step solution:
As we know that for any function f(x) to satisfy LMVT in interval [a, b] f(x) should be a real valued function and it should satisfy two conditions. (i) f(x) is continuous in the interval [a, b] (ii) f(x) is also differentiable in the open interval (a, b). And there is at least one point x = c in the interval [a, b] for which f(b) – f(a) = f’(c)(b – a).
So, let us find the derivative of the function f(x) with respect to x.
\[ \Rightarrow \]f’(x) = \[{e^x}\]
So, f’(c) = \[{e^c}\]
Now let us find the value of f(0) and f(1) because the interval is [0, 1].
So, f(0) = \[{e^0} = 1\]
And, f(1) = \[{e^1} = e\]
So, to check whether c lies in the interval [0, 1] we must equate f’(c) with f(1) – f(0).
\[ \Rightarrow f'\left( c \right) = \dfrac{{f\left( 1 \right) - f\left( 0 \right)}}{{1 - 0}}\]
\[ \Rightarrow {e^c} = \dfrac{{e - 1}}{1}\]
Cross-multiplying above equation.
\[ \Rightarrow {e^c} = e - 1\]
Now taking log both sides of the equation.
\[ \Rightarrow \log \left( {{e^c}} \right) = \log \left( {e - 1} \right)\]
As we know that according to the logarithmic identities \[\log \left( {{e^a}} \right) = a\]
\[ \Rightarrow \]So, c = \[\log \left( {e - 1} \right)\]
And the value of log(e – 1) lies in the interval [0, 1]. So, there exists c such that it lies in interval [0, 1] and satisfies the LMVT condition.
Hence, LMVT is verified for the function f(x) = \[{e^x}\] in [0,1].
Note: - Whenever we come up with this type of problem then first we have to find the derivative of the function f(x) and then find the value of f(a) and f(b) where a and b are the lower and upper limits of the given interval [a, b]. And then we had to find the value of c by solving the equation \[f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}}\]. And if the value of c lies in the interval [a, b] then f(x) must satisfy Lagrange’s Mean Value Theorem otherwise not. This will be the easiest and efficient way to find the solution of the problem.
Complete step by step solution:
As we know that for any function f(x) to satisfy LMVT in interval [a, b] f(x) should be a real valued function and it should satisfy two conditions. (i) f(x) is continuous in the interval [a, b] (ii) f(x) is also differentiable in the open interval (a, b). And there is at least one point x = c in the interval [a, b] for which f(b) – f(a) = f’(c)(b – a).
So, let us find the derivative of the function f(x) with respect to x.
\[ \Rightarrow \]f’(x) = \[{e^x}\]
So, f’(c) = \[{e^c}\]
Now let us find the value of f(0) and f(1) because the interval is [0, 1].
So, f(0) = \[{e^0} = 1\]
And, f(1) = \[{e^1} = e\]
So, to check whether c lies in the interval [0, 1] we must equate f’(c) with f(1) – f(0).
\[ \Rightarrow f'\left( c \right) = \dfrac{{f\left( 1 \right) - f\left( 0 \right)}}{{1 - 0}}\]
\[ \Rightarrow {e^c} = \dfrac{{e - 1}}{1}\]
Cross-multiplying above equation.
\[ \Rightarrow {e^c} = e - 1\]
Now taking log both sides of the equation.
\[ \Rightarrow \log \left( {{e^c}} \right) = \log \left( {e - 1} \right)\]
As we know that according to the logarithmic identities \[\log \left( {{e^a}} \right) = a\]
\[ \Rightarrow \]So, c = \[\log \left( {e - 1} \right)\]
And the value of log(e – 1) lies in the interval [0, 1]. So, there exists c such that it lies in interval [0, 1] and satisfies the LMVT condition.
Hence, LMVT is verified for the function f(x) = \[{e^x}\] in [0,1].
Note: - Whenever we come up with this type of problem then first we have to find the derivative of the function f(x) and then find the value of f(a) and f(b) where a and b are the lower and upper limits of the given interval [a, b]. And then we had to find the value of c by solving the equation \[f'\left( c \right) = \dfrac{{f\left( b \right) - f\left( a \right)}}{{b - a}}\]. And if the value of c lies in the interval [a, b] then f(x) must satisfy Lagrange’s Mean Value Theorem otherwise not. This will be the easiest and efficient way to find the solution of the problem.
Recently Updated Pages
Why is there a time difference of about 5 hours between class 10 social science CBSE

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

