
Vector $M$ of magnitude $5$ cm, is at ${36.9^ \circ }$ counter clockwise from the +X axis. It is added to vector $N$ , and the resultant is a vector of magnitude $5$ cm at ${53.1^ \circ }$ clockwise from +X axis. Find the magnitude of $N$
A. $5\sqrt 2 $
B. $9\sqrt 2 $
C. $3\sqrt 2 $
D. $7\sqrt 2 $
Answer
411k+ views
Hint: To find the magnitude of $N$ , we have to draw the vectors on the graph and find the angle between the vectors to find the magnitude of the vectors by using Pythagoras’ theorem. We use the concept of positive and negative angles from the origin.
Complete step by step answer:
We are given that, vector $M$ of magnitude $5$ cm is ${36.9^ \circ }$ counter clockwise from +X axis is added to vector $N$, the resultant vector is of magnitude $5$ cm is ${53.1^ \circ }$ clockwise from +X axis. Representing these vectors, we have
Vector $M$, $N$ and the resultant of $M\& N$ makes a right angled triangle.So, using Pythagoras’ theorem in $\Delta AOB$, we have
Magnitude of vector $N$= $\therefore \left| N \right| = \sqrt {O{A^2} + O{B^2}} $
$\left| N \right| = \sqrt {{5^2} + {5^2}} $
$\therefore \left| N \right| = 5\sqrt 2 $ cm
The magnitude of $N$ is $5\sqrt 2 $ cm.
Hence, option A is correct.
Note: We should use the positive and negative angles notation for counterclockwise and clockwise angles, respectively. We can also use the triangle law of addition of the vectors which states that when two vectors are represented as two sides of the triangle with the order of magnitude and direction, then the third side of the triangle represents the magnitude and direction of the resultant vector.
Complete step by step answer:
We are given that, vector $M$ of magnitude $5$ cm is ${36.9^ \circ }$ counter clockwise from +X axis is added to vector $N$, the resultant vector is of magnitude $5$ cm is ${53.1^ \circ }$ clockwise from +X axis. Representing these vectors, we have

Vector $M$, $N$ and the resultant of $M\& N$ makes a right angled triangle.So, using Pythagoras’ theorem in $\Delta AOB$, we have
Magnitude of vector $N$= $\therefore \left| N \right| = \sqrt {O{A^2} + O{B^2}} $
$\left| N \right| = \sqrt {{5^2} + {5^2}} $
$\therefore \left| N \right| = 5\sqrt 2 $ cm
The magnitude of $N$ is $5\sqrt 2 $ cm.
Hence, option A is correct.
Note: We should use the positive and negative angles notation for counterclockwise and clockwise angles, respectively. We can also use the triangle law of addition of the vectors which states that when two vectors are represented as two sides of the triangle with the order of magnitude and direction, then the third side of the triangle represents the magnitude and direction of the resultant vector.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Is Cellular respiration an Oxidation or Reduction class 11 chemistry CBSE

In electron dot structure the valence shell electrons class 11 chemistry CBSE

What is the Pitti Island famous for ABird Sanctuary class 11 social science CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells
