
Vector $M$ of magnitude $5$ cm, is at ${36.9^ \circ }$ counter clockwise from the +X axis. It is added to vector $N$ , and the resultant is a vector of magnitude $5$ cm at ${53.1^ \circ }$ clockwise from +X axis. Find the magnitude of $N$
A. $5\sqrt 2 $
B. $9\sqrt 2 $
C. $3\sqrt 2 $
D. $7\sqrt 2 $
Answer
494.1k+ views
Hint: To find the magnitude of $N$ , we have to draw the vectors on the graph and find the angle between the vectors to find the magnitude of the vectors by using Pythagoras’ theorem. We use the concept of positive and negative angles from the origin.
Complete step by step answer:
We are given that, vector $M$ of magnitude $5$ cm is ${36.9^ \circ }$ counter clockwise from +X axis is added to vector $N$, the resultant vector is of magnitude $5$ cm is ${53.1^ \circ }$ clockwise from +X axis. Representing these vectors, we have
Vector $M$, $N$ and the resultant of $M\& N$ makes a right angled triangle.So, using Pythagoras’ theorem in $\Delta AOB$, we have
Magnitude of vector $N$= $\therefore \left| N \right| = \sqrt {O{A^2} + O{B^2}} $
$\left| N \right| = \sqrt {{5^2} + {5^2}} $
$\therefore \left| N \right| = 5\sqrt 2 $ cm
The magnitude of $N$ is $5\sqrt 2 $ cm.
Hence, option A is correct.
Note: We should use the positive and negative angles notation for counterclockwise and clockwise angles, respectively. We can also use the triangle law of addition of the vectors which states that when two vectors are represented as two sides of the triangle with the order of magnitude and direction, then the third side of the triangle represents the magnitude and direction of the resultant vector.
Complete step by step answer:
We are given that, vector $M$ of magnitude $5$ cm is ${36.9^ \circ }$ counter clockwise from +X axis is added to vector $N$, the resultant vector is of magnitude $5$ cm is ${53.1^ \circ }$ clockwise from +X axis. Representing these vectors, we have
Vector $M$, $N$ and the resultant of $M\& N$ makes a right angled triangle.So, using Pythagoras’ theorem in $\Delta AOB$, we have
Magnitude of vector $N$= $\therefore \left| N \right| = \sqrt {O{A^2} + O{B^2}} $
$\left| N \right| = \sqrt {{5^2} + {5^2}} $
$\therefore \left| N \right| = 5\sqrt 2 $ cm
The magnitude of $N$ is $5\sqrt 2 $ cm.
Hence, option A is correct.
Note: We should use the positive and negative angles notation for counterclockwise and clockwise angles, respectively. We can also use the triangle law of addition of the vectors which states that when two vectors are represented as two sides of the triangle with the order of magnitude and direction, then the third side of the triangle represents the magnitude and direction of the resultant vector.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

