
Value (s) of \[{{\left( -i \right)}^{\dfrac{1}{3}}}\] is/are
This question has multiple correct options
(a). \[\dfrac{\sqrt{3}-i}{2}\]
(b). \[\dfrac{\sqrt{3}+i}{2}\]
(c). \[\dfrac{-\sqrt{3}-i}{2}\]
(d). \[\dfrac{-\sqrt{3}+i}{2}\]
Answer
511.8k+ views
Hint: Try to manipulate the given equation to get into the form of algebraic identity of \[{{a}^{3}}-{{b}^{3}}\] and then use algebraic identity:
\[{{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\]
By using this find the possible algebraic solutions for the required expression.
Complete step-by-step answer:
Definition of i; can be written as,
The solution of the equation: \[{{x}^{2}}+1=0\], is i. i is an imaginary number. Any number which has an imaginary number in its representation is called a complex number.
Definition of a complex equation, can be written as, an equation containing complex numbers in it, is called a complex equation.
It is possible to have a real root for complex equations.
Example: \[\left( 1+i \right)x+\left( 1+i \right)=0\], \[x=1\] is the root of the equation.
Given expression for which we need value(s) is given by:
\[{{\left( -i \right)}^{\dfrac{1}{3}}}\]
So let the given expression be assumed as x here,
\[x={{\left( -i \right)}^{\dfrac{1}{3}}}\]
By cubing on both sides of this equation we get:
\[{{x}^{3}}=-i\]
By adding the imaginary number i on both sides, we get:
\[{{x}^{3}}+i=0\]
For making the degree same, we do a change to “i”:
\[{{x}^{3}}+{{\left( -i \right)}^{3}}=0\]
This can be simplified as:
\[{{x}^{3}}-{{i}^{3}}=0.....\left( 1 \right)\]
Now we use general algebraic identity:
\[{{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\]
By substituting, \[a=x,b=i\], we get:
\[{{x}^{3}}-{{i}^{3}}=\left( x-i \right)\left( {{x}^{2}}-1+ix \right)\]
Substituting this back into equation (1), we get:
\[\left( x-i \right)\left( {{x}^{2}}-1+ix \right)=0\]
One of the root is, \[x=i\].
Other roots of the equation are , \[{{x}^{2}}-1+ix=0\].
Roots of a quadratic equation, \[a{{x}^{2}}+bx+c=0\] re given by
\[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
By substituting values of a, b, c as 1, i ,-1 respectively, we get:
\[x=\dfrac{-i\pm \sqrt{-1+4}}{2}=\dfrac{-i\pm \sqrt{3}}{2}\]
So, the values of \[{{\left( -i \right)}^{\dfrac{1}{3}}}\] expression are, \[i,\dfrac{-i\pm \sqrt{3}}{2}\].
Options (a), (c) are true.
Note: Be careful while substituting a, b don’t forget to take the \[{{3}^{rd}}\] root \[\left( x-i \right)\]. You get the result even by neglecting that root but if we change options you may miss one root. So always remember to take all possible roots of the equation.
\[{{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\]
By using this find the possible algebraic solutions for the required expression.
Complete step-by-step answer:
Definition of i; can be written as,
The solution of the equation: \[{{x}^{2}}+1=0\], is i. i is an imaginary number. Any number which has an imaginary number in its representation is called a complex number.
Definition of a complex equation, can be written as, an equation containing complex numbers in it, is called a complex equation.
It is possible to have a real root for complex equations.
Example: \[\left( 1+i \right)x+\left( 1+i \right)=0\], \[x=1\] is the root of the equation.
Given expression for which we need value(s) is given by:
\[{{\left( -i \right)}^{\dfrac{1}{3}}}\]
So let the given expression be assumed as x here,
\[x={{\left( -i \right)}^{\dfrac{1}{3}}}\]
By cubing on both sides of this equation we get:
\[{{x}^{3}}=-i\]
By adding the imaginary number i on both sides, we get:
\[{{x}^{3}}+i=0\]
For making the degree same, we do a change to “i”:
\[{{x}^{3}}+{{\left( -i \right)}^{3}}=0\]
This can be simplified as:
\[{{x}^{3}}-{{i}^{3}}=0.....\left( 1 \right)\]
Now we use general algebraic identity:
\[{{a}^{3}}-{{b}^{3}}=\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)\]
By substituting, \[a=x,b=i\], we get:
\[{{x}^{3}}-{{i}^{3}}=\left( x-i \right)\left( {{x}^{2}}-1+ix \right)\]
Substituting this back into equation (1), we get:
\[\left( x-i \right)\left( {{x}^{2}}-1+ix \right)=0\]
One of the root is, \[x=i\].
Other roots of the equation are , \[{{x}^{2}}-1+ix=0\].
Roots of a quadratic equation, \[a{{x}^{2}}+bx+c=0\] re given by
\[x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}\]
By substituting values of a, b, c as 1, i ,-1 respectively, we get:
\[x=\dfrac{-i\pm \sqrt{-1+4}}{2}=\dfrac{-i\pm \sqrt{3}}{2}\]
So, the values of \[{{\left( -i \right)}^{\dfrac{1}{3}}}\] expression are, \[i,\dfrac{-i\pm \sqrt{3}}{2}\].
Options (a), (c) are true.
Note: Be careful while substituting a, b don’t forget to take the \[{{3}^{rd}}\] root \[\left( x-i \right)\]. You get the result even by neglecting that root but if we change options you may miss one root. So always remember to take all possible roots of the equation.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Trending doubts
State and prove Bernoullis theorem class 11 physics CBSE

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Why is steel more elastic than rubber class 11 physics CBSE

Explain why a There is no atmosphere on the moon b class 11 physics CBSE

State the laws of reflection of light
