
What is the value of $ \underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right) $ ?
Answer
527.1k+ views
Hint: We first change the variable of the limit with the conversion of $ \dfrac{1}{x}=z $ . The limit value of the function also changes from $ x\to \infty $ to $ z\to 0 $ . We change all the variables from $ x $ to $ z $ as $ \underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{{{z}^{2}}} $ . We use the theorems $ \underset{x\to a}{\mathop{\lim }}\,f\left( x \right)g\left( x \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)\times \underset{x\to a}{\mathop{\lim }}\,g\left( x \right) $ and $ \underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{z}=1 $ . We put the values to get $ \underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)=\infty $ .
Complete step by step solution:
First, we try to change the variable for the given limit value of $ \underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right) $ .
We use the conversion of $ \dfrac{1}{x}=z $ . The given limit form is $ x\to \infty $ .
Due to the change of the variable the limit also changes to $ z=\dfrac{1}{x}\to 0 $ .
The value of the $ x $ becomes $ x=\dfrac{1}{z} $ .
The function changes to $ \underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{1}{{{z}^{2}}}\sin z=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{{{z}^{2}}} $ .
Now we are going to apply the limit theorem of $ \underset{x\to a}{\mathop{\lim }}\,f\left( x \right)g\left( x \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)\times \underset{x\to a}{\mathop{\lim }}\,g\left( x \right) $ .
Therefore, $ \underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{{{z}^{2}}}=\underset{z\to 0}{\mathop{\lim }}\,\left( \dfrac{\sin z}{z}\times \dfrac{1}{z} \right)=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{z}\times \underset{z\to 0}{\mathop{\lim }}\,\dfrac{1}{z} $ .
Now we have the limit theorem $ \underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{z}=1 $ .
We apply the theorem to get $ \underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{z}\times \underset{z\to 0}{\mathop{\lim }}\,\dfrac{1}{z}=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{1}{z} $ .
Now we apply the limit value to get $ \underset{z\to 0}{\mathop{\lim }}\,\dfrac{1}{z}=\infty $ .
Therefore, $ \underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{{{z}^{2}}}=\infty $ .
The limit value of $ \underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right) $ is $ \infty $ .
So, the correct answer is “ $ \infty $”.
Note: The precise definition of a limit is something we use as a proof for the existence of a limit. When we’re evaluating a limit, we’re looking at the function as it approaches a specific point. we approach a particular value of x, the function itself gets closer and closer to a particular value.
Complete step by step solution:
First, we try to change the variable for the given limit value of $ \underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right) $ .
We use the conversion of $ \dfrac{1}{x}=z $ . The given limit form is $ x\to \infty $ .
Due to the change of the variable the limit also changes to $ z=\dfrac{1}{x}\to 0 $ .
The value of the $ x $ becomes $ x=\dfrac{1}{z} $ .
The function changes to $ \underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{1}{{{z}^{2}}}\sin z=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{{{z}^{2}}} $ .
Now we are going to apply the limit theorem of $ \underset{x\to a}{\mathop{\lim }}\,f\left( x \right)g\left( x \right)=\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)\times \underset{x\to a}{\mathop{\lim }}\,g\left( x \right) $ .
Therefore, $ \underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{{{z}^{2}}}=\underset{z\to 0}{\mathop{\lim }}\,\left( \dfrac{\sin z}{z}\times \dfrac{1}{z} \right)=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{z}\times \underset{z\to 0}{\mathop{\lim }}\,\dfrac{1}{z} $ .
Now we have the limit theorem $ \underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{z}=1 $ .
We apply the theorem to get $ \underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{z}\times \underset{z\to 0}{\mathop{\lim }}\,\dfrac{1}{z}=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{1}{z} $ .
Now we apply the limit value to get $ \underset{z\to 0}{\mathop{\lim }}\,\dfrac{1}{z}=\infty $ .
Therefore, $ \underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right)=\underset{z\to 0}{\mathop{\lim }}\,\dfrac{\sin z}{{{z}^{2}}}=\infty $ .
The limit value of $ \underset{x\to \infty }{\mathop{\lim }}\,{{x}^{2}}\sin \left( \dfrac{1}{x} \right) $ is $ \infty $ .
So, the correct answer is “ $ \infty $”.
Note: The precise definition of a limit is something we use as a proof for the existence of a limit. When we’re evaluating a limit, we’re looking at the function as it approaches a specific point. we approach a particular value of x, the function itself gets closer and closer to a particular value.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

10 examples of friction in our daily life

